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Abstract — Guryul Ravine (Kashmir, India) is unique in that it is the only ammonoid bearing expanded and complete
Permian-Triassic boundary section along the entire southern Tethys margin. As such it may be important to note that
during a field campaign in 2017 we identified a fault within the Griesbachian part of the section. Although it can be
detected in aerial photographs (if searched for) it is quite difficult to be seen in the field. As this structure has not been
described in previous publications we assume that it has been overlooked and thus might account for some problems
in stratigraphic correlation between previous studies. Also, in a recently published study about Guryul Ravine, we

identified some errors that we want to bring to attention

INTRODUCTION

The classic Guryul Ravine section in Kashmir/India has been
studied for palacontology since 1907 and 1909 by Hayden
and Middlemiss, respectively. Teichert (1970) was the first to
report a mixed Permo-Triassic fauna from there and a Japanese-
Indian research group carried out an extensive palacontological
study (Nakazawa et al., 1970, 1975; Nakazawa and Kapoor
1981; Matsuda 1981, 1982, 1983, 1984). More recently, Algeo
et al. (2007), Korte et al. (2010), Horacek et al. (2014) and
Brookfield & Sun (2015) investigated the section. Baud et al.
(2014) published a field guide containing a compilation of
published and also new data.

Lately, following their high-resolution sampling, Brosse et
al. (2017) reassessed and revised the conodont biochronology
and presented a carbon isotope curve of the fifteen lowermost
stratigraphical meters of the Khunamuh Formation at Guryul

Ravine section, which they correlate with Member E in
Nakazawa et al. (1975) above the sandstone layers of the
topmost Zewan Formation (Member D of Nakazawa et al.,
1975). This interval includes both the Permian-Triassic and
the Griesbachian-Dienerian (lower-upper Induan) boundaries.
Brosse et al. (2017) confirm the first occurrence of Hindeodus
parvus, the index for the base of the Triassic (Yin et al., 2001),
in the middle of sub-member E2 (Unit 56 of Matsuda, 1981)
in bed GUR09 and characterize 11 Unitary Association
Zones based on the conodont record from China and from
Guryul Ravine. Brosse et al. (2017) identify the Griesbachian-
Dienerian boundary (GDB) within the interval between UAZS
and UAZY9, which corresponds in the Guryul Ravine section to
the space between their bed numbers GUR310 and GUR311.
Brosse et al. (2017) define the GDB by using as marker the first
occurrence of Sweetospathodus kummeli, corresponding to the
replacement of segminiplanate (here Clarkina and Neoclarkina)
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Figure 1-Aerial view of the Guryul Ravine section with indication of
the fault and location of measured sections (base image from Google
Earth). Red line indicates the trace of the fault, yellow line refers to
the trace of the section of Brosse et al. (2017), green line indicates our
section (unpublished) and probably also the Nakazawa et al. (1975)
section, according to the almost perfect lithological match up to the
base of F member. Black line is the boundary between the Zewan and
Khunamuh Formations. Dashed lines indicate strike of beds below
the fault.

by segminate (Sweetospathodus and Neospathodus) conodonts.
Brosse et al. (2017, p.359) note that “this faunal turnover
was possibly linked to a climate change at the Griesbachian-
Dienerian transition, from a cool and dry to a hot and humid
climate” and “This transition could be the trigger of the
migration of neogondolellids towards high latitudes and of the
radiation of neospathodids during the Dienerian.” However,
Brosse et al. (2017) state that a bed-by-bed correlation of their
results with the log by Nakazawa et al. (1975) could not be
achieved.

MATERIAL AND METHODS

After having visited the Guryul Ravine section several times
in recent years we observed a high-angle fault with omission of
beds at the study locality of Brosse et al. (2017) in the upper
Griesbachian (Figs. 1 and 2). This fault results in a missing
interval of approximately 5.5-6.0 metres (which is the upper
part of the E3 member of Nakazawa et al., 1975) — nearly
40% of the Griesbachian in their section (Fig. 3) between
beds 308 and 310 of Brosse et al. (2017). We believe that this
unidentified fault, as a consequence, resulted in the problem to
achieve a bed-by-bed correlation with Nakazawa et al. (1975)
and Nakazawa and Kapoor (1981) respectively, as Brosse et
al. (2017) note. When adding the missing part, a bed-by-bed

sections correlation between these authors can be done (Fig. 3).

Figure 2 — Photograph of a part of the section investigated by Brosse
et al. (2017). Note the bed numbers marked on the rocks in the field
with the fault and its movement direction indicated.

Consequently, also the isotope curve presented by Brosse et al.
(2017) has a gap that needs to be closed.

Furthermore, when comparing the section figure in Baud et
al. (2014, fig. 23), which contains identical sample numbers, it is
obvious that it does not fit to the figure published subsequently
in Brosse et al. (2017). When comparing these two profiles of
the same section (Baud et al., 2014; Brosse et al., 2017) we
observe distinctive variations, e.g., a significant difference in
distance between samples GUR299 and GUR300 with ca. Im
in Baud et al. (2014) and ca. 5m in Brosse et al. (2017). As this
discrepancy occurs in the footwall of the fault in the section it
cannot account for it. Furthermore, we could not identify such
a variation in thickness between the two beds along strike over
100m distance. An explanation for these differences is required
to rule out the possibility of merging samples from different
parts of the section or combining disparate data (e.g., conodonts
and isotopes) from only apparently identical sample numbers —
however coming from different levels within the section.

RESULTS

Amending the stratigraphic log for the missing interval
enables us to do a bed-by-bed correlation of Nakazawa et al.
(2015) data with the detailed conodont record in Brosse et
al. (2017) as noted above. Therefore, we can link the macro-
fossil and sedimentological dataset of Nakazawa et al. (1975)
to the conodont data set by Brosse et al. (2017). By combining
the two data sets, we can correlate Otoceras woodwardi with
Hindeodus parvus, Ophiceras tibeticum with Clarkina krystyni
and note a good agreement in the finding of Clarkina carinata
and Hindeodus typicalis. We have to stress, however, that the
correlation is based entirely on the published data and the
conodont stratigraphy will be again significantly revised by our
ongoing study.

Brosse et al. (2017, fig. 18) report conodont Unitary
Assemblage Zones (UAZ) with some very strange UAZs, i.e.
UAZ10 and UAZ11 where Sweetospathodus kummeli, having an
exceptionally long duration, is co-occurring with Neogondolella
chaohuensis, Eurygnathodus costatus and Neospathodus eowaageni.
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Figure 3 — Side-by-side sections data comparison between Nakazawa et al. (1975) and Brosse et al. (2017, modified), with a bed-by-bed
correlation, position of the gap, and conodont zones after data of Brosse et al. (2017); fossils mentioned in text are underlined. H.= Hindeodus,
|.s.= Isarcicella staeschei, C. car.= Clarkina carinata, C.= Clarkina, Nc.= Neoclarkina, S.k.z.= Sweetospathodus kummelizone, N.= Neospathodus.
Note, Anchignathodus is an old synonym for Hindeodus. Bed-by-bed correlation between Nakazawa et al. (1975) and Brosse et al. (2017) was
achieved by lateral tracing of the individual beds between the two section lines in the field.

We are not aware of any section where these co-occurrences exist.
To our experience so far and from published literature (Orchard,
2007; Chen et al., 2015; Zhang et al., 2007), S. kummeli only
occurs over a very short interval and in association of just a few
species (e.g., Ns. dieneri, Ne. discreta, C. carinata, C. planata,
C. taylorae, C. tulongensis). This co-occurrence of further
species in Brosse et al. (2017, fig. 18) probably points towards
a confusion of species, admixture of samples, a condensed
interval or something similar — to our current knowledge - or an
error. On the other hand, according to Zhang et al. (2007), S.
kummeli co-occurs with Nbs. cristagalli and, therefore the range
of Ns. cristagalli has to be revised in Brosse et al. (2017, fig. 18)
too and in consequence also the UAZs. As we think that there
are several problems and inconsistencies concerning the UAZ
9-11, we think that there is need for correction.

DISCUSSION AND CONCLUSIONS

The high-angle fault with omission of beds identified by us
in the field 2017 now enables a bed-by-bed correlation of the
Brosse et al. (2017) data with the results of Nakazawa et al.

(1975). The correlation of the data sets produced by Nakazawa
et al. (1975) and Brosse et al. (2017) allows the combination of
micro- and macro-fossils identified hithero in the Guryul Ravine
section. Our correlation confirms the co-existence of Otoceras
woodwardi with Hindeodus parvus and Opbiceras tibeticum with
C. krystyni. The correlation also shows a good agreement in
the Clarkina (Neogondolella) carinata ranges (except that the
lowermost mentioned occurrence in Member E1 by Nakazawa
et al. (1975) has to be omitted). However, the reader needs to
keep in mind that another revision of the conodont data will be

shortly published by the authors.
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Abstract— We present a summary of previously published Olenekian—Anisian boundary magnetostratigraphic and
biostratigraphic results from the Kgira area of northern Albania. We focus on the stratigraphically complete K¢ira-A
section that represents a potential candidate Global Boundary Stratotype Section and Point (GSSP) for the base of the
Anisian Stage of the Triassic System. The previously published conodont biostratigraphy from Kgira-A and ancillary
sections located nearby has been updated using modern taxonomic criteria and correlated to the available ammonoid
and benthic foraminifera biostratigraphy. Previously published magnetobiostratigraphic data reveal the occurrence at
Kcira-A, and ancillary sections, of a well-defined magnetic polarity reversal pattern of primary origin that allows global
correlations ensuring the exportability of biostratigraphic datums (e.g., the first occurrence of conodont Chiosella
timorensis) falling close to the Kclr/Ke2n polarity transition. A suite of pilot samples has also been studied for bulk

carbon and oxygen isotopes stratigraphy, yielding reasonable values that suggest good preservation of primary material.
These data indicate that with additional studies, K¢ira-A would represent an ideal base Anisian GSSP.

INTRODUCTION

Arthaber (1911) and Nopcsa (1929) first described an Early
Triassic ammonoid fauna within a reddish nodular limestone
succession from the Kcira area of northern Albania. In this area,
Muttoni et al. (1996) reported a detailed magnetostratigraphic
record of an Olenekian/Anisian boundary section termed Kg¢ira-A
that was correlated to the vertical distribution of key conodonts
(figured by Mego, 2010 and reported also below), ammonoids,
and benthic foraminifera species. Ancillary sections from the
same nodular limestone unit were also studied for magneto-
biostratigraphy (K¢ira-B) and magnetostratigraphy (K¢ira-C),

and were correlated to the reference Kc¢ira-A section. Ammonoids
from Kgira-A and a further ancillary section (Kgira-G) were
appraised by Germani (1997). A geologic map of the K¢ira area
(Muttoni et al., 1996) was recently augmented by additional
biostratigraphic and tectonic observations and data (Gawlick et
al., 2008, 2014, 2016), which complements geologic studies of
Albania (Mego, 2000 and references therein). These studies reveal
that the thicker and stratigraphically more complete K¢ira-A
section has excellent potential as a candidate Global Boundary
Stratotype Section and Point (GSSP) for the base of the Anisian
Stage of the Triassic System. In this paper, we summarize key
magneto-biostratigraphy aspects of K¢ira-A and ancillary sections,
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describe new carbon and oxygen isotope results, and discuss
future developments aimed at formally proposing Kcira-A as
candidate Anisian GSSP.

GEOLOGY AND LITHOSTRATIGRAPHY

Kgira is located in northern Albania about 130 km (2.5
hours by car) north of Tirana. This area is characterized by a
complex mélange of blocks, ranging in size from a few meters to
some kilometers, comprised of Early to Late Triassic limestones,
Triassic volcanics, and Triassic radiolarites, embedded in a thick
Bathonian—Callovian (Jurassic) radiolaritic-ophiolitic unit (Fig.
1A) (Gawlick et al., 2008, 2014, 2016; Gaetani et al., 2015).
The Kgira-A section crops out to the northwest of the new Kgira
village (Fig. 1A, B, C), together with additional ancillary sections
described in this study, that have been correlated by means of
lithostratigraphy, magnetostratigraphy, and biostratigraphy (Fig.
2) as discussed below. These sections are part of an Olenekian—
Anisian nodular limestone belt that probably formed as a single
slab prior to being embedded into the Jurassic radiolaritic-
ophiolitic unit. This tectonic mélange is part of the K¢ira-Dushi-

Komani radiolaritic flysch (ophiolitic Mélange) at the sole of the
Mirdita Zone ophiolites (Gaetani et al., 2015; Gawlick et al.,
2016 and references therein).

The Kgira-A (main) section is about 42 m thick, whereas
the ancillary Kcira-B section, located a few meters away
within the same outcrop, is about 4.5 m thick. On the basis of
magnetostratigraphic correlation, projected layers of Kgira-B
partially overlap with the basal portion of K¢ira-A (Fig. 2). As
reported in Muttoni et al. (1996), both sections are comprised
of reddish to pale pink wackestones and mudstones arranged in
cm thick nodular beds that are strongly amalgamated to form
meter-scale composite layers. These limestones were termed the
Han-Bulog Limestone by Muttoni et al. (1996), but red nodular
limestones of the Bulog Formation in southwest Serbia are
Anisian in age and developed on top of a drowned Middle Anisian
(Pelsonian) shallow-water carbonate ramp (Sudar et al., 2013).
Therefore, as proposed by Gawlick et al. (2014), the Olenekian—
Anisian red nodular limestones of Kcira (rosenrot Knollenkalk
of Nopcsa, 1929 equivalent to the Han-Bulog Limestone of
Muttoni et al., 1996) should not be termed Bulog (or Hallstatt,
or Han-Bulog) Limestone, at least in the Olenekian section. We
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Figure 1 — A, Geological map of the Kg¢ira area (modified after Muttoni et al., 1996 using data from Gawlick et al., 2014). ‘A", ‘B’, ‘C’, ‘G’ are
sections Kgira-A, Kgira-B, Kcira-C, and Kcira-G; ‘D’ and ‘E’ are additional sites of paleontological or lithological interest described in Muttoni et
al. (1996). B, Aerial view and C, picture of the Kgira area with location of conspicuous points and the Kgira-A GSSP candidate.
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Figure 2 — Main lithological units of the correlated Kcira sections
discussed in the text with position of paleomagnetic (Pmag) and
biostratigraphic (Bio) samples after Muttoni et al. (1996) and Germani
(1997).

provisionally and informally refer to these Olenekian—Anisian
limestones as nodular limestones of Kcira.

The basal 4.8 m of nodular limestones at K¢ira-A (as well
as the entire K¢ira-B) are reddish and clay-rich, with pervasive
bedding-parallel stylolites (lithologic UnitI, Fig. 2). Above a cover
extending up to meter level 8.5, amalgamated nodular limestones
become pink (Unit II) and then pale pink (Unit III) (Fig. 2). A
set of cm thick calcite veins cut the bedding between meter 18
and 23 at K¢ira-A. The uppermost few meters of K¢ira-A contain
packstones, which are more pink, richer in bioclasts, and are more
distinctly bedded (Unit IV, Fig. 2). The top of the K¢ira nodular
limestone is marked by small neptunian dikes sealed by a cm thick
silicified crust of uncertain age, as observed at site D (Fig. 1A).

The Kgira-C section is 10.2 m thick and located about 100
m east of Kcira-A and Kgira-B (Fig. 1A). Although a detailed
lithological description was not made for K¢ira-C, an upsection
decrease in red pigmentation to pink closely resembles that
observed at Kcira-A (Fig. 2), which provides a first order means of
lithological correlation (Muttoni et al., 1996). K¢ira-G is located
in between Kgira-A and Kgira-C (Fig. 1A), but no lithological
description is provided (Germani, 1997). Based on projected
layers, K¢ira-G should correspond to the basal K¢ira-A as well
as the entire Kgira-B sections (Fig. 2).

Two sections were previously studied for magnetostratigraphy
and biostratigraphy (K¢ira-A and K¢ira-B; Muttoni et al., 1996),
Kcira-C only for magnetostratigraphy (Muttoni et al., 1996), and
Kgira-G only for biostratigraphy (Germani, 1997). The K¢ira-A
and Kgira sections are most likely the localities described by
Nopcsa (1929). Bedding attitude (azimuth of dip/dip) varies
from 347°E/34° at K¢ira-A to 12°E/45°E at K¢ira-B and Kcira-C.

BIOSTRATIGRAPHY

Conodonts

Conodonts from Kcira-A and Kgira-B sections originally
reported by Muttoni et al. (1996) have been revised in this
study according to recent advances in conodont taxonomy. Some
conodont species of Muttoni et al. (1996) were later illustrated
by Mego (2010) and are reported in Figure 3. The conodont
fauna from these sections is abundant and well preserved. The
CAI (Color Alteration Index, Epstein et al., 1977) is 3, indicating
that the host rock reached burial temperatures of 110°-200°C.
The conodont main events are grouped as follows from the base
to the top (Fig. 4; see also key species in Fig. 3):

1. 'The conodont association from lithologic Units I and II
is represented by Triassospathodus abruptus Orchard, 1995, T.
triangularis (Bender, 1970), Spathicuspus spathi (Sweet, 1970),
1. homeri (Bender, 1970), Gladigondolella carinata Bender,
1970, 1" symmetricus (Orchard, 1995), 1. brochus (Orchard,
1995), Neogondolella sp., N. sp. A, Triassospathodus sp., and
Gladigondolella tethydis (Huckreide, 1958). This fauna is mostly
consistent with fauna 3 of Orchard (1995) and with the fauna
described in the lower part of the Degli Caira section (North
Dobrugea, Romania) by Gradinaru et al. (2007) and Orchard et
al. (2007a), as well as in the Lower Guandao section (Guizhou
Province, China) by Orchard et al. (2007b). These faunas are
altogether attributed to the late mid Spathian.

2. The appearance of Chiosella gondolelloides (Bender,
1970) (sample AK28, 20.2 m) is an easily recognized datum
that predates the occurrence of C. timorensis (Nogami,1968;
AK30, 22.4 m). This is in broad agreement with data from
Chios (Gaetani et al., 1992; Muttoni et al., 1995), Desli Caira
(Gradinaru et al., 2007; Orchard et al., 2007a) and Lower and
Upper Guandao (Orchard et al., 2007b). The appearance of
Chiosella timorensis (= Gondolella timorensis in Gaetani et al., 1992;
Muttoni et al., 1995) may be used to approximate the base of
the Anisian (Gradinaru et al., 2006, 2007; Orchard et al., 2007a,
2007b) especially when ammonoids are absent. Orchard (1995),
Gradinaru et al. (2007), Orchard et al. (2007a, 2007b) have well
summarized and described the taxonomy of these species.

3. Neogondolella regalis Mosher, 1970 appears at 26.7 m
(AK37) and is interpreted to span the late Aegean and mid
Bithynian (Mosher, 1970; Gedik, 1975; Nicora, 1977; Kovacs
& Kozur, 1980).

4. Paragondolella bulgarica Budurov and Stefanov (1975)
appears at 28.7 m (AK40) and is a proxy for the base of the
Bithynian substage. It ranges up to the boundary interval of the
Binodosus and Trinodosus ammonoid Zones (Budurov & Stefanov,
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1972, 1975; Gedik, 1975; Nicora, 1977; Kovacs & Kozur, 1980;
Balini & Nicora, 1998; Farabegoli & Perri, 1998; Kovacs &
Ralisch-Felgenhauer, 2005; Balini et al., 2019).

5. Nicoraella kokaeli (Tatge, 1956) appears at 35.3m (AK49)
and approximates the base of the Pelsonian substage (Nicora,
1977; Kovacs & Kozur, 1980; Balini & Nicora, 1998; Farabegoli
& Perri, 1998).

6. Paragondolella bifurcata bifurcata (Budurov and Stefanov,
1972) appears at 33.4 m (AK47) while P bifurcata hunbuloghi
Sudar and Budurov, 1979 appears at 35.3 m (AK49). These
species are attributed to the Pelsonian substage (Budurov &
Stefanov, 1972, 1975; Sudar & Budurov, 1979; Kovacs & Kozur,

1980; Balini & Nicora, 1998; Kovacs & Ralisch-Felgenhauer,
2005).

Based on the conodont fauna, the Kcira-A section covers the
late mid Spathian to Pelsonian while K¢ira-B section is restricted
to the late mid Spathian.

Ammonoids

The lower part of the Kgira-A section (Unit I of Figs. 2—4)
is rich in ammonoids. From this part of the section, Germani
(1997) described a small fauna with high diversity that is
middle Spathian (Subcolumbites Zone sensu Guex et al., 2010

Figure 3 — Conodonts from Kgira-A and Kcira-B of Muttoni et al. (1996), figured in Meco (2010), and taxonomically updated in this study. (1)
Triassospathodus abruptus Orchard, 1995, lateral view, K¢ira-B, sample AK62, x 70. (2) Spathicuspus spathi (Sweet, 1970), lateral view,
Kcira-A, sample AK13, x 120. (3) Triassospathodus homeri (Bender, 1970), lateral view, Kgira-A, sample AK8, x 80. (4) Chiosella timorensis
(Bender, 1970), lateral view, K¢ira-A, sample AK31, x 82. (5) Chiosella gondolelloides (Bender, 1970), lateral view, K¢ira-A, sample AK35, x 90.
(6) Neogondolella regalis Mosher, 1970, oblique-upper view, K¢ira-A, sample AK37, x 100. (7) Paragondolella bulgarica (Budurov & Stefanov,
1972), juvenile stage, lateral view, Kcira-A, sample AK42, x 110. (8) Nicoraella kokael (Tatge, 1956), lateral view, K¢ira-A, sample AK55, x 105.
(9) Paragondolella bifurcata hunbuloghi (Sudar and Budurov,1979), oblique-upper view, K¢ira-A, sample AK52, x 80. (10) Paragondolella bifurcata
bifurcata (Budurov and Stefanov, 1972), lateral view, K¢ira-A, sample AK48, x 80. (11) Paragondolella bifurcata bifurcata Budurov & Stefanov,

1972, lateral view, Kgira-A, sample AK48, x 80.
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and Jenks et al., 2013). This fauna (Fig. 5) is dominated by
Subcolumbites and Albanites, in addition to leiostraceans, and is
almost equivalent to the fauna described from Kg¢ira by Arthaber
(1911). Ammonoid assemblages also indicate middle Spathian
at K¢ira-B and K¢ira-G (Germani, 1997). Ammonoids also are
reported from the middle and upper part of the Kcira-A section
(Germani, 1997) in Units III and IV (Fig. 5), but they are long-
ranging leiostracean that verify the presence of Anisian strata, but
thus far a more refined age assignment is not possible.

Benthic Foraminifera

As outlined in Muttoni et al. (1996), benthic foraminifera
are very scarce in the lower part of Kc¢ira-A (Fig. 5). Gaudryina?
n. sp. is discontinuously present from meter 14.3 (AK17) to
22.4 (AK30), where Meandrospira dieneri? appears. A more
diversified and abundant fauna was recovered from meter 28.1
to 34.2 at K¢ira-A (samples AK39 to AK48). This assemblage is
characterized by Ophralmidium aft. O. abriolense, Arenovidalina
chialingchiangensis, Pilammina densa, Meandrospira dinarica,
Earlandia amplimuralis and E. gracilis. An Anisian age not
younger than Pelsonian is attributed to this assemblage. It is
noteworthy that 2 densa occurs in association with conodonts
of Bithynian age.

PALEOMAGNETISM

Paleomagnetic properties

Samples for paleomagnetic analyses were collected with a
portable water-cooled rock drill and oriented with a magnetic
compass. Sections Kgira-A and K¢ira-B were sampled at an average
interval of 20-25 cm, while sampling at 40—50 cm was applied
at Kgira-C (Fig. 6; Muttoni et al., 1996). Based on standard
rock-magnetic experiments, Muttoni et al. (1996) concluded
that nodular layers of the lower half of K¢ira-A (Units I-1I),
as well as of Unit I of K¢ira-B, were characterized by abundant
hematite, contributing to the relatively high natural remanent
magnetization (NRM) (Fig. 6A) and magnetic susceptibility, as
well as the pervasive reddish-pink hues typical of this part of the
succession. In contrast, pale-pink nodular layers above (Unit I1I)
preserve a mineralogical association of less abundant magnetite
coexisting with hematite, giving lower NRM and magnetic
susceptibility, although the lowest values between meter 18 and
23 at K¢ira-A are also associated with a dense network of calcite
veins (Fig. 6A). The top of Unit IIT has a few samples with very
high NRM intesities and univectorial component trajectories
during thermal demagnetization that are interpreted as due to
lightning-induced IRM (Isothermal remanent magnetization),
whereas the uppermost few meters of the Kcira succession (Unit
IV) are richer in resedimented carbonate layers that might have
enhanced the concentration of detrital magnetite (see Muttoni
et al., 1996 for details).

Upon application of thermal demagnetization, a characteristic
(Ch) component with either northeast-and-down or southwest-
and-up directions was resolved in 88% of the samples in the

temperature range between about 400°C and either 520-575°C
or 650-680°C (Fig. 7A). These Ch component directions
display variable mean angular deviation (MAD; Fig. 6B) values
depending on NRM intensities (Fig. 6A). They show dual polarity
atall investigated sections (Fig. 7B), albeit the normal and reverse
mean polarity directions depart from antipodality by up to 27°,
perhaps due to contamination of the Ch magnetizations by an
initial viscous component broadly aligned along the present-day
field direction (Fig. 7A). The three mean directions from Kgira-A,
Kgira-B, and K¢ira-C (Fig. 7B) show some degree of convergence
after correction for bedding tilt, the Fisher precision parameter
k increasing by a factor of 3 with a full (100%) tilt correction,
suggesting that the Ch magnetizations were acquired before
deformation. However, the limited difference in bedding attitudes
makes the fold test statistically inconclusive (see Muttoni et al.,

1996 for details).

Magnetostratigraphy and correlations with sections
from the literature

A virtual geomagnetic pole (VGP) was calculated for each
sample Ch component direction after correction for bedding
tile. The latitude of the sample VGP with respect to the overall
mean (north) paleomagnetic pole (i.e. VGP latitude) was used
to delineate the magnetic polarity stratigraphy (Fig. 6C, D).
At Kcira-A, the VGP latitudes define a sequence of polarity
intervals extending from Kcln.1n at the base to Kc3r at the
top. Submagnetozone Kcln.1Ir near the base of K¢ira-A nicely
correlates to the short reverse polarity interval at Kgira-B,
lending credibility to this single sample-based reversal. Finally,
the magnetic polarity stratigraphy at K¢ira-C shows an excellent
match with Kgira-A across multiple polarity reversals in the Kelr
interval (Fig. 6), which also contain several biostratigraphic events
potentially useful to define the base of the Anisian.

According to the recent Triassic geomagnetic polarity scale of
Maron etal. (2019), the magnetostratigraphic sequence of K¢ira-A
correlates reasonably well with the Lower and Upper Guandao
(Lehrmann etal., 2015), Chios (Muttoni et al., 1995), and Desli
Caira (Gradinaru et al., 2007) sections (see Figures 11 and 12 in
Maron et al., 2019). According to this correlation scheme that
incorporates U-Pb age data from Guandao (Lehrmann et al.,
2015), Kgira-A should extend from approximately 248 to 244
Ma, and the level containing the appearance of Chiosella timorensis
should have an interpolated age of ~247.3 Ma (Lehrmann et al.,
2015; see also Maron et al., 2019).

CHEMOSTRATIGRAPHY

Carbon isotope stratigraphy provides additional means
to correlate among marine sections, and under the right
circumstances (and with the independent magnetostratigraphic
constraints above) can allow correlation between terrestrial and
marine sections (see review by Salzman & Thomas, 2012). The
d"C_ of bulk sedimentary carbonate can be an important tool
to use in sections that lack sufficient biomagnetostratigraphy,
especially in older time periods (e.g., Paleozoic, Cramer and
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Conodonts:
(1) Triassospathodus abruptus 1
(2) Triassospathodus triangularis
(3) Spathicuspus spathi

(4) Triassospathodus homeri J
(5) Gladigondolella carinata

(6) Triassospathodus symmetricus
(7) Triassospathodus brochus

(8) Neogondolella sp. 1
(9) Neogondolella sp. A

(10) Triassospathodus sp.
(11) Gladigondolella tethydis

(12) Chiosella gondolelloides
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Figure 4 — Vertical distribution of conodonts from Kgira-A and Kgira-B after Muttoni et al. (1996) with taxonomic revision from this study (see

also Fig. 3 for pictures of key conodonts).

Saltzmann, 2005; Middle—Late Triassic, Muttoni et al., 2014).
The detailed biomagnetostratigraphic framework at Kgira will
provide the necessary context to identify and constrain useful
carbon isotopic events and trends associated with the base of the
Anisian, which then can be used as a template for carbon isotope
stratigraphy elsewhere. The Olenekian—Anisian boundary interval
is known to contain carbon isotope excursions (e.g., Richoz et al.,
2007) that, by virtue of their large amplitudes and global nature,
represent useful markers for the base of the Anisian. Therefore,
we will analyze carbon stable isotopes on bulk CaCO, from the
Kgira section, and the attendant oxygen isotopes will be used as
a metric of the degree of diagenetic alteration (in general, carbon

isotopes of calcite are more resistant to diagenetic alteration than
oxygen isotopes [Marshall, 1992]).

We conducted a pilot study of bulk carbonate stable isotopes
(880, 8"C) using rock samples that were prepared with a Buehler
Isomet low speed saw to avoid veins. These selected samples were
broken into millimeter fragments using a rock hammer, and then
crushed for 15 to 20 minutes, or until completely powdered, at
low speed in a Fritsch Ball Mill or an Across International HQ-
NO4 Vertical Planetary Ball Mill. Between each crushing, the
agate bowl (lid, rubber washer, and cup) was cleaned and rinsed
thoroughly to remove any remaining powdered sample. Stable
isotopes were measured on bulk sediment samples in the Stable
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Figure 5 — Vertical distribution of ammonoids from Kgira-A, Kcira-B, and Kgira-G after Germani (1997), and of benthic foraminifera from Kgira-A

after Muttoni et al. (1996).

Isotope Lab at Rutgers University using a multiprep peripheral
device and analyzed on an Micromass Optima mass spectrometer.
Samples were reacted in 100% phosphoric acid at 90°C for 13
min. Values are reported relative to V-PDB through the analysis
of an internal standard calibrated with NBS-19 (1.95%o for
8"3C), as reported by Coplen (1995).

Our pilot study of bulk sedimentary CaCO, shows that
Kcira-A samples yield reasonable values, and the 8'%0 is consistent
with an expected marine range (e.g., see Veizer and Prokoph,
2015), indicating good preservation of primary material (Fig.

8). In particular, the pilot bulk 8'%0 is comparable to that of
conodont bioapatite (Trotter et al. 2015) that show correlative
temperature changes with pCO, in the Late Triassic (Knobbe
and Schaller 2018). Because of the broadly similar diagenetic
and tectonic histories of these sections, we can expect similar
results for the Anisian. Relatively little sedimentary carbonate
is produced in deep waters, and therefore bulk sediment/rock
samples best characterize the average 8'>C of the total carbonate
produced and preserved in the marine system (Shackleton, 1987).
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shown by half bars. Also reported are the VGP latitudes and magnetic polarity zones of Kgira-B and Kgira-C (data from Muttoni et al., 1996).

DISCUSSION AND FUTURE DIRECTIONS

In virtue of its stratigraphic continuity, quality of
magnetostratigraphic and biostratigraphic (especially conodonts)
records, promising chemostratigraphic data, relatively simple
accessibility (130 km by car from the capital city Tirana
and near a village with accommodations and provisions),
and logistics support provided by the Geological Survey of
Albania, we consider Kcira-A a reliable GSSP to define the
base of the Anisian. Potential events under scrutiny and critical
discussion to define the base Anisian include at present both
biostratigraphic and magnetostratigraphic datums (Fig. 8):

1. 'The FO of Gladigondolella tethydis at meter 15.70 (sample
AK20).

2. 'The FO of Chiosella timorensis at meter 22.40 (sample
AK30).

3. 'The last occurrence (LO) of Gladigondolella carinata at
meter 26.30 (sample AK36), albeit this conodont has at present
a very discuntinuous distribution at K¢ira-A (Fig. 8).

4. 'The base of magnetozone Kclr.1r at meter 17.025.

5. 'The base of magnetozone Kclr.1n (= MT1n of Hounslow
etal., 2007) at meter 22.50 close to the FO of Chiosella timorensis
at meter 22.40.

6. The base of magnetozone Kc2n at meter 24.675.

Aside magnetostratigraphy that is already well-resolved
(Muttoni et al., 1996), these and/or possibly other biostratigraphic
events potentially useful to approximate the base of the Anisian
would need to be re-assessed and better defined with additional
sampling at K¢ira-A to demonstrate their ability for global
correlation. Dedicated sampling would also be needed to provide
the section with a continuous 6"*C and 8'%0O record coupled with
microfacies analysis.
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Figure 7 — Paleomagnetic properties of Kcira-A, Kgira-B, and Kgira-C
samples. A, Zijderveld thermal demagnetograms of representative
samples from Kcira-A. Closed symbols are projections onto the
horizontal plane and open symbols are projections onto the vertical
plane in in situ coordinates and demagnetization temperatures are
expressed in °C. B, Equal-area projections before (in situ) and after
bedding tilt correction of the characteristic Ch component directions
from Kgira-A, Kgira-B, and Kcira-C, with associated site-mean directions
calculated with standard Fisher statistics (data from Muttoni et al.,
1996).
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THE CARNIAN-NORIAN BOUNDARY GSSP CANDIDATE AT BLACK BEAR
RIDGE, BRITISH COLUMBIA, CANADA: UPDATE, CORRELATION, AND
CONODONT TAXONOMY

Michael J. Orchard

Geological Survey of Canada, 1500-605 Robson Street, Vancouver, B.C., V6B 5/3, Canada
Email: mike.orchard@canada.ca

Abstract — Re-assessment of conodonts from the Carnian-Norian boundary (CNB) at Black Bear Ridge (BBR),
British Columbia and Pizzo Mondello (PM), Sicily improves correlation. Fossil endemism is less of a problem than
are differing taxonomic approaches. Re-evaluation of literature suggests that most platform genera differentiated at
BBR can also be recognized at PM. These are Carnepigondolella, Ancyrogondolella, ? Kraussodontus, Metapolygnathus,
Norigondolella, Parapetella, Primatella, and Quadralella. Only Acuminatella at BBR is endemic, whereas use of
Hayashiella and Paragondolella at PM is discounted. Hence, faunal turnovers PM-T1 and PM-T3 are not strongly
endemic. Standardization of the conodont nomenclature facilitates improves correlation of the two GSSP candidates:
top Carnepigondolella samueli Zone at BBR is equivalent to a position within the “Epigondolella” vialovi Zone at PM;
the Primatella primitia Zone can be recognized in both sections; correlation of the Mezapolygnathus parvus Subzone is
strengthened by 14 new conodont identifications at PM, including relatives of the Pr. gulloae Zone index; the lower
Norian succession of Ancyrogondolella quadrata succeeded by An. triangularis, well-known in western Canada, appears
corrupted at PM.

The FAD of Metapolygnathus parvus alpha morphotype can be correlated between sections, as can the simultaneous
demise of typical Carnian taxa. At BBR, the concurrent appearance of diminutive conodont species corresponds to
geochemical excursions implying anoxia and a temperature maximum during the Me. parvus Subzone. Within 1 m
above this datum, the FAD of other fossil proxies occur, including an array of conodonts, the bivalve Halobia austriaca,
and the ammonoid Prerosirenites sp.. The Me. parvus Subzone corresponds to the uppermost part of the traditional
Carnian ammonoid zone of Klamathites macrolobatus.

INTRODUCTION the two successions are greater than previously recognized, but
significant anomalies remain. Alternative horizons for CNB
This paper provides a summary of the conodont biostratigraphy ~ definition are considered.

and other salient features of the Carnian-Norian boundary (CNB) A thorough description of the conodonts and their succession

succession at Black Bear Ridge (BBR), British Columbia, Canada,
a candidate for the Global Stratotype Section and Point (GSSP)
for the stage boundary (Orchard, 2007b, c). It also presents a
further rationale for the BBR conodont taxonomy presented
earlier (Orchard, 2013, 2014) and, through that filter, re-assesses
the conodont succession described from Pizzo Mondello (PM),
Sicily, Italy (Mazza et al., 2011, 2012a, b, 2018; Mazza &
Martinez-Perez, 2015; Rigo et al., 2018): similarities between

across the CNB at BBR was provided by Orchard (2014)
following the earlier introduction of new genera (Orchard,
2013). The conodonts and ammonoids from the entire BBR
succession on Williston Lake identify strata ranging from within
the upper Carnian up to the Hettangian of the Lower Jurassic
(Orchard et al., 2001a, b). The studied CNB interval represents
the lowest ~90 m of the succession, starting within the upper
Carnian Ludington Formation and extending into the Pardonet
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Formation as high as the base of the lower Norian Malayites
dawsoni (ammonoid) Zone.

The succession of Ludington and Pardonet formations formed
under low energy conditions in a deep water, lower slope - basin
paleoenvironment, as a distal ramp facies at the passive western
margin of Pangaea (Zonneveld et al., 2010; Onoue et al., 2016).
A rich pelagic fauna occurs in the Pardonet Formation and
ammonoids occurring at multiple levels show that the studied
section includes both the upper Carnian Klamathites macrolobatus
Zone and the succeeding lower Norian Stikinoceras kerri Zone
(see Tozer, 1994; McRoberts & Krystyn, 2011; Balini et al.,
2012). Conodont faunas occur throughout the section, and are
often abundant in the Pardonet Formation (Orchard, 2014,
fig. 5). Pelagic bivalves are common and have been described
by McRoberts (2011). Some ichthyoliths (Johns et al., 1997;
Johns, in Orchard et al., 2001a, b) and brachiopods (Sandy, in
Orchard et al., 2001a, b) have been described, as have several
ichthyosaurians from nearby localities (Gowan 1995, 1996).
Geochemical analyses across the boundary interval have been
undertaken for 6‘3Cmg (Williford, 2007); for *St/*Sr, 6"°C_,,
00 _, and the redox sensitive elements (V, Ni, and Cr) (Onoue
et al., 2016); and for 8'°0,,
2019; in press). Magnetostratigraphic sampling failed to reveal

in conodont apatite (Sun et al.,

a primary signal (Muttoni et al., 2001).

CONODONT DIVERSITY AND ENDEMISM

Different taxonomic approaches have been taken by conodont
researchers in the Upper Triassic (Orchard, 2014; Mazza et al.,
2012b, 2018). This has resulted in different morphological scope
for several genera, variable diagnoses of species, and a resulting
nomenclature that makes comparison of the primary candidate
successions at Black Bear Ridge (BBR) and Pizzo Mondello
(PM) in Sicily more challenging. Mazza et al. (2018, p. 82-3)
noted that correlations between the two were problematic, citing
differing paleolatitudes and paleoecologically induced endemism.
The extent of this provincialism is examined here and found to
be less than was previously thought.

Conodonts from all CNB successions are generally dominated
by gondola-shaped platform elements of variable shape and oral
ornament. These features have been weighted differently by
authors. The taxonomy of the less common scaphate elements
(Sweet, 1988), of Neocavitella and Misikella, and the coniform
Zieglericonus is more straightforward, but these genera are rare
or absent at BBR.

The generic classification of platform conodonts from
BBR (Orchard, 1991a, 2013, 2014) focuses primarily on the
configuration of anterior platform margins (see taxonomy).
There is an increase in the amplitude of anterior platform nodes
and denticles displayed by platform elements through the Upper
Triassic. Platform shape, posterior ornament, relative blade-carina
length, and pit position differentiate species within genera, with
several of them showing similar evolutionary trends that involve
concurrent platform reduction, blade lengthening, and anterior
pit migration. Within the study interval, diminutive platform
species evolve iteratively, near the top of the C. samueli Zone and

particularly around the base of the Me. parvus Subzone within
the Pr. primitia Zone.

In addition to eight platform genera described from the CNB
interval at BBR (see below), about 150 lesser taxonomic entities
(species, subspecies, morphotypes) have been differentiated
(Orchard, 2014). This diversity underpins the precise placement
of significant faunal horizons expressed as three zones and
nine subzones, one of which (the Me. parvus Subzone) is
further divided into three intervals (Orchard, 2104, figs. 3-6;
Figure 1). At PM, about 45 conodont taxa representing 6
platform genera are described by Mazza et al. (2012, amended
Rigo et al., 2018, Mazza et al., 2018) from the same CNB
interval; they are: Carnepigondolella, Epigondolella, Hayashiella,
Metapolygnathus, Norigondolella, and Paragondolella. For reasons
described below, and based on published illustrations, these
are re-interpreted as species of the genera Carnepigondolella,
Ancyrogondolella, ? Kraussodontus, Metapolygnathus, Norigondolella,
Parapetella, Primatella, and Quadralella. These are most of the
genera described from BBR, although the numbers of species/
morphotypes differentiated are far fewer at PM. Only the
platform genus Acuminatella appears to be totally absent at PM
and can reasonably be regarded as a North American endemic.

The comparatively high numbers of taxa differentiated at
BBR compared with PM arises from contrasting taxonomic
approaches, summarized as ‘splitting’ and ‘Tumping’. The former
isadopted at BBR (Orchard, 2014) where a typological approach
promulgates a richness of taxa that enables stratigraphic and
geographic ranges of distinct morphospecies to be discovered, and
a potential increase in points of correlation. This is particularly
important because many species have previously been broadly
interpreted by authors, as is evident in the PM literature.
Standardization of the taxonomies used at BBR and PM is the
key to optimize correlation of the two CNB successions.

KEY CONODONT DATUMS AT BBR &
CORRELATION WITH PM

Significant stratigraphic horizons established at BBR are
shown as zones and subzones in Figure 1, which also shows
conodont abundance through the entire section and the ranges of
genera. Figure 2 shows ranges of both conodonts and macrofossils
across the narrower CNB interval. Lower and upper boundary
boundaries for the Pr. primitia Zone mark significant faunal
turnovers, with the disappearance and appearance of genera,
each preceded by accelerated evolution and peak abundances
(Orchard, 2014, fig. 5). Species of Carnepigondolella are also
relatively small at the top of the C. samueli Zone (C. spenceri
Subzone), prior to their extinction. A third turnover showing
similar attributes occurs within the Pr. primitia Zone, where the
Me. parvus Subzone shows a major reduction in typical Carnian
taxa and element diminution in several lineages. The top of the
Me. parvus Subzone is marked by the virtual disappearance of all
Carnian platform genera other than Primatella and Acuminatella,
which are later joined by common Norigondolella. Other than
these three turnover events, boundaries between subzones of the
C. samueli and succeeding Pr. primitia zones are defined by an
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Figure 1 — Conodont zonation, conodont yield, and stratigraphic ranges of genera across the Carnian-Norian boundary interval at Black Bear
Ridge. Columnar section on left adapted from Zonneveld et al. (2010), to which the reader is referred for a discussion of the sedimentary units
on the left (modified from Orchard, 2014, fig. 5).
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Figure 2 — The CNB boundary interval at Black Bear Ridge showing (from left) sample numbers, macrofossil (bivalve, ammonoid) occurrences
(gray dots) and ranges, conodont subzones, and key conodont occurrences (black dots) and ranges for the ~5 m interval; clear dots mean
uncertain occurrence. Conodont genera abbreviations are Ac.= Acuminatella, K.= Kraussodontus, Me.= Metapolygnathus, Pa.= Parapetella,

Pr.= Primatella; Q. = Quadralella. (Modified from Orchard, 2014, fig. 28).

evolutionary succession of species (Orchard, 2014, figures 7-25).

At PM, three conodont faunal turnovers - termed T'1, T2 and
T3 — were identified by Mazza et al. (2010) and slightly revised
by Rigo et al. (2018, fig. 6.4), who also introduced new Tethyan
conodont zones. In terms of the latter, turnover T'1 corresponds
to the base of the “Epigondolella” vialovi Interval Zone at PM,
and T2 and T3 correspond respectively to the base and top of
their Me. parvus Zone (see also Mazza et al., 2018, fig. 5). This
correlation differs from that proposed by Orchard (2014, fig. 5),
who was misguided by the differing scope of genera and their
apparent ranges in the two sections. The equivalence of BBR
and PM zonation are considered here in the light of taxonomic
revisions discussed in detail below.

The Carnepigondolella clade and the range of
“Epigondolella”

Carnepigondolella is the common ornate platform conodont
that occurs globally in the upper Carnian. In North America, its

range is thought to lie largely or wholly within the Tropites welleri
ammonoid Zone, although no direct association of the conodont
and ammonoid zone is currently known. The genus disappears
by end of the C. samueli Zone at BBR, which is believed to
correspond to the beginning of the final ammonoid zone of the
Carnian, the K. macrolobatus Zone. No such correlation has been
suggested at PM, where the scope of Carnepigondolella has been
very different. However, Mazza et al. (2018, p. 87-8, fig. 2; not
correct in fig. 5) concluded that turnover T'1 at PM corresponds
to the top C. samueli Zone at BBR because of the disappearance
of Carnepigondolella at that level has parallels with the reduction
in Carnepigondolella at PM.

There are two problems with this correlation. First, at PM,
Carnepigondolella species typical of the C. samueli Zone range
upward into the “E. vialovi Zone alongside “Epigondolella”
species, which progressively replace the former genus according
to Mazza et al. (2018). This correlation fails to take into account
that the “Epigondolella” species like those identified by Mazza
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et al. (2012a; Rigo et al., 2018) in the “E. vialovi Zone are
included in Carnepigondolella by Orchard (2014). The C. spenceri
Subzone at the top of the C. samueli Zone at BBR is marked by
a rapid succession of Carnepigondolella species showing reduced
platforms, lengthening blades, and anterior migration of the
pit (Orchard, 2014, fig. 17, 18). The anterior denticles of these
species are comparable to other Carnepigondolella species and they
are viewed as advanced representatives of that genus rather than
a separate genus, and certainly not Epigondolella sensu stricto, a
genus that occurs first in middle Norian strata (Orchard, 2018).

The same evolutionary trends are common to both BBR and
PM. They are manifest in the successive appearance of the alpha
and beta morphotypes of Carnepigondolella pseudodiebeli sensu
Orchard (2014) at BBR, and in the appearance of C. spenceri
and allied forms. Morphotypes of C. pseudodiebeli at BBR are
comparable at PM to C. pseudodiebeli and “ Epigondolella” vialovi
sensu Mazza & Martinez-Pérez (2015, pl. 2), and C. spenceri is
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comparable with “Epigondolella” heinzi (Rigo et al., 2018, p.
206). Hence, the upper part of the C. samueli Zone at BBR is
equivalent to some part of the “E.” vialovi Zone, and its top is
best drawn within the latter zone (Figure 3).

A second anomaly of the earlier proposed correlation of base
“E vialovi Zone with top C. samueli Zone concerns the range
of other genera. Many Quadralella species (called Hayashiella and
Paragondolella by Mazza et al., 2018) disappear at that level at PM,
whereas Q. angulata, Q. carpathica, Q. oertlii, and Q. tuvalica, as
well as others newly described, range well above the C. samueli
Zone at BBR. The explanation for this difference may lie in the
ecological competition, as invoked for these taxa by Mazza et al.
(2009), although the competition is not evident at BBR. It is
also notable that other species such as Q. kathleenae, Me. dylani
and Me. praccommunisti (Quadralella sensu Orchard), as well as
other species formerly included in the latter species (Parapetella
clareae, ? Kraussodontus roberti) occur within the C. samueli Zone

Figure 3 — The Pizzo Mondello section, Sicily showing sample numbers (after Mazza et al., 2012b) and the Tethyan conodont zonation and faunal
turnovers T1-T3 (after Rigo et al., 2018) on left; on the right, the conodont and ammonoid zonations at Black Bear Ridge, British Columbia with
suggested equivalence, including correlation of top C. samueli Zone, and base and top of Me. parvus Subzone. Revised conodont occurrences
at PM (dots) based on published illustrations (see taxonomy text for details). Abbreviations as in Fig. 2, plus An. = Ancyrogondolella and ‘E’ =
‘Epigondolella’. Thin vertical bars connect multiple new records; thick vertical bars are ranges of selected taxa at PM (from Rigo et al., 2018;
Mazza at al., 2018); broken lines connect early records of An. uniformis and An. triangularis that appear out-of-place based on Canadian data.
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equivalent at PM. None of these are known from BBR prior to the
Pr. primitia Zone. On the contrary, the distribution of Q. lobata
(see taxonomy) at PM correlates well with BBR occurrences,
where it ranges midway through the C. samueli Zone.

Younger representatives assigned to Carnepigondolella at PM,
i.e., C. pseudoechinata and C.2 gulloae, are herein re-assigned
to Primatella, so Carnepigondolella sensu Orchard (2014) does
indeed disappear within the “E.” vialovi Zone. This reconciles the
apparently different successions at BBR and PM and counters the
suggestion (Mazza et al., 2018, p. 88) that the “proliferation of
the endemic North American genera ..... absent in the Tethys,
allowed the epigondolellids to proliferate earlier in the Tethys.”
In fact, the same late stage Carnepigondolella evolutionary trends
and appearance of “Epigondolella” occur in both regions.

The Carnepigondolella fauna is replaced at BBR by species
of Acuminatella, Primatella, and Parapetella, none of which are
explicitly recorded at PM. However, rather than being endemic,
species of Primatella do occur in the younger parts of the “E.
vialovi Zone, and sporadic examples of Parapetella occur (Fig.
3). A reinterpretation of illustrated specimens of long-ranging
“Epigondolella” vialovi from PM identifies within it examples of
upper Carnian C. samueli, CNB Primatella aff. permica, and lower
Norian Ancyrogondolella uniformis (Mazza et al., 2010, 2012b)
(see taxonomy). The holotype of E. vialovi actually resembles
An. uniformis, and An. aff. vialovi has been interpreted as a lower
Norian species by Orchard (2014).

In the higher part of the “E.” vialovi Zone, several additional
species assigned to Epigondolella are reported by Rigo etal. (2018),
namely E. triangularis, E. uniformis, E. rigoi, and E. quadrata.
These species were all established in the lower Norian and are
now assigned to Ancyrogondolella (Orchard, 2018). Their presence
in the upper Carnian and basal Norian is doubtful based on
available illustrations, for example: E. guadrata from PM (Nicora
et al., 2007; Balini et al., 2010) have either been previously re-
assigned to ‘Epigondolella’ miettoi (Balini et al., 2010), or are
here re-assigned to Primatella species; Me. mersinensis from the
upper Carnian (Mazza et al., 2012b) resembles Pr. subquadrata;
E. rigoi from the upper Carnian (Nicora et al., 2007) resembles
the ornate Pr. permica; E. rigoi from the Me. parvus Zone (Nicora
et al., 2007; Mazza et al., 2010) is close to Pr. triangulare; and
a Norian specimen of E. uniformis illustrated by Mazza et al.
(2012b) resembles Pr. rhomboidale (see Fig. 3) None of these
are to be confused with younger, lower Norian occurrences
of Ancyrogondolella quadrara (Mazza et al., 2012b; Mazza &
Martinez-Perez, 2015) and An. rigoi (Nicora et al., 2007; Mazza
etal., 2010; Mazza et al., 2012b; Mazza & Martinez-Perez, 2015).

Concerning illustrated specimens of Ancyrogondolella
triangularis and An. uniformis from PM, none of the alleged
upper Carnian occurrences of those species have been
illustrated. In North America, examples of these posteriorly
ornate Ancyrogondolella species, often determined as An. ex
gr. triangularis, typically occur in the younger lower Norian
M. dawsoni and Juvavites magnus ammonoid zones and their
appearance within the “C.2” gulloae Zone at PM (sample
NA43, in Mazza & Martinez-Perez, 2015, pl. 5), equivalent to
the Pr. asymmetrica - Norigondolella Subzone and prior to the
An. quadrata Zone at BBR, is problematic: these records need

verification.

In summary, the conodont successions at both BBR and PM
are interpreted to consist of a diverse Carnepigondolella clade that
disappears in the upper Carnian and is superseded by faunas that
include Metapolygnathus, Quadralella and the first Primatella.

The Carnian-Norian boundary turnover

A second major conodont turnover at BBR involving
the disappearance of several Carnian genera begins in the
Acuminatella acuminata — Parapetella prominens Subzone of
the Pr. primitia Zone (Fig. 2). This interval represents both a
period of evolutionary innovation, and the initial die-off of
long-ranging Carnian taxa, which reaches its peak midway
through the overlying Me. parvus Subzone. At BBR, species with
anteriorly shifted pits (Metapolygnathus sensu Mazza etal., 2018)
are common at this level and therefore probably equate with the
original faunal turnover T2 at PM (Mazza et al., 2010, p. 131),
which is within the Me. communisti Zone of Rigo et al. (2018),
where Metapolygnathus becomes dominant over “Epigondolella”.

Faunal turnover PM-T2 has recently been updated to
equate with sample NA35 and to approximate the base of the
Metapolygnathus parvus Zone (Mazza et al., p. 83, tab.1; Rigo et
al., 2018). That revision lowers the base of the Me. parvus Zone
(=boundary interval of Mazza et al., 2012b, fig. 2) and reduces
the Me. communisti Zone of Rigo et al. (2018) to a single sample
(Mazza etal., 2018, tab.1, FNP117). Reassessment of published
illustrations from both the Me. communisti and Me. parvus zones
at PM confirms that, as at BBR, a mixture of Metapolygnathus,
Parapetella, Primatella, and Quadralella species dominate the
interval (Fig. 3). Besides Me. communisti, Me. dylani, and Me.
parvus, these additional BBR species are recognized (see taxonomy
for details): Pa. destinae (Mazza etal., 2012b), Pa. irwini (Mazza et
al., 2012b); ?Pa. n. sp. D of Orchard, 2014 (Mazza et al., 2018);
Pr. asymmetrica (Mazza & Martinez-Perez, 2015), Pr. bifida
(Mazza et al., 2012b); and Pr. triangulare (Nicora et al., 2007;
Mazza et al., 2010). The diminutive Pa. johnpauli, Pa. pumilio,
and Pa. willifordi are also stated to occur at PM as “Tethyan
morphotypes of the Me. communisti fauna” (Mazza et al., 2018),
but none of these diminutive species have been illustrated, or
their range documented. Quadralella multinodosus and similarly
ornate ?Me. dylani also occur at PM but are not found at BBR
(see taxonomy).

As recently discussed by Mazza et al. (2018), the FAD of
Metapolygnathus parvus, which defines the base of the Me.
parvus (Sub-)Zone, is a datum recognized at both BBR and
PM. However, the concept of Me. parvus currently embraces
several morphotypes (Orchard, 2014; Mazza et al., 2018) with
variable platform shape and ornament. The subrectangular-oval
alpha morphotype, close to the holotype of the species, appears
to be the more stable concept and occurs in both sections. The
elongate beta morphotype, which lacks strong nodes or denticles,
was erronecously called Me. echinatus by Orchard (2007b), a
determination that was followed by Mazza et al. (2012b, 2018)
both for elements that lacked pronounced ornament (=Me.
parvus beta morphotype of Orchard, 2014) and others that
had a distinctive pair of anterior nodes or denticles, which were
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assigned to Pa. destinae by Orchard (2014). Finally, the gamma
morphotype of Me. parvus described by Orchard (2014) has a
much longer posterior process than that illustrated by Mazza et
al. (2018) and is not clearly the same taxon.

The successive first occurrences of the alpha, beta, and gamma
morphotypes of Metapolygnathus parvus occur in that order at
BBR. According to Mazza et al. (2018, fig. 4), a comparable
succession of the BBR morphotypes occurs at PM, but the
revisions above imply a somewhat different succession involving
Parapetella destinae and Me. parvus new morphotype. Notably,
Pa. destinae first appears in the Ac. acuminata — Pa. prominens
Subzone at BBR, prior to the Me. parvus Subzone (Fig. 2;
Orchard, 2014, fig. 28), so it is important to specify the scope
of the chosen index species.

The substantial and rapid faunal turnover in the Canadian
section begins below the base of the Me. parvus Subzone and
continues through the entire span of the subzone, which is
further subdivided into three divisions. The lowest 40 cm of the
Me. parvus Subzone contains the FAD of Me. parvus and of five
Primatella species, including Pr. asymmetrica; the next 40 cm of
the Me. parvus Subzone contains the first appearance of several
more diminutive Parapetella species. Most larger Carnian species
other than Acuminatella and Primatella disappeared within this
middle division of the Me. parvus Subzone at BBR and the greater
part of the Me. parvus Subzone is assigned to its upper division
(-2+ m at BBR), which is characterized by a bloom of diminutive
elements (Fig. 2; Orchard, 2014, Fig. 6). No such division or
succession is currently identified at PM.

Norian stasis

At BBR, the top of the Metapolygnathus parvus Subzone is
defined by the disappearance of the name-giver and its associated
diminutive taxa (Fig. 2). Above the Me. parvus Zone, faunas are
dominated by relatively stable populations of Acuminatella and
Primatella +/- Norigondolella species. There are very few first
occurrences about the top of the Me. parvus Zone through the
remainder of the Pr. primitia Zone at BBR, the rare occurrence of
Acuminatella curvata being an exception. Hence, recognition of
the Pr. asymmetrica — Norigondolella Subzone of the Pr. primitia
Zone is generally based on Primatella dominated faunas lacking
Me. parvus Subzone indicators, or by the common association
of Norigondolella.

The end of the extinction of typical Carnian taxa at BBR
approximates PM-T3, which corresponds to the base of the
Carnepigondolella? gulloae Zone of Rigo et al. (2018, fig. 2). The
top of the range of Me. parvus at PM is above the base of the “C.2”
gulloae Zone, so the upper boundary of the Me. parvus Subzone
sensu Orchard (2014) correlates to that higher level (Fig. 3).
[lustrated examples of the Carnepigondolella? gulloae from PM
(Mazza et al., 2012b) are variable and show affinity with several
species of Primatella, including Pr. subquadrata, Pr. triangulare,
and Pr. rotunda. These similarities emphasize the re-assignment
here of the PM index species to Primatella, and again suggests
there was less endemism than previously assumed. Each of these
similar Primatella species range through the boundary interval at
BBR, which suggests that Pr. gulloae and its predecessors might

be located at BBR. However, the species lacks clear ancestry and
is too poorly known to be a suitable index.

The “C.2” gulloae Zone post-T3 turnover at PM also
corresponds to the occurrence of “abundant epigondolellids”
(Mazza etal., 2018, p. 83), but in view of the previous observations
these may be species of Primatella rather than ‘Epigondolella
(=Ancyrogondolella). The presumably correlative Pr. asymmetrica
— Norigondolella Subzone strata of the Pr. primitia Zone at BBR
appears to have been a relatively stable time without notable
evolutionary developments. Then, the wholesale replacement of
Primatella by Ancyrogondolella occurred near the top of the S. kerri
ammonoid Zone, which is at the base of the “type” An. quadrata
Zone. Similar platform shapes occur in populations of both
Primatella and early Ancyrogondolella but the anterior denticles
of the latter are higher and sharper, which is also reflected in their
differing platform microreticulation (Orchard, 1983, figs. 3, 9).
This late S. kerri Zone event may correlate with the appearance
of “advanced forms of E. quadrata” at PM (Mazza et al., 2012b,
fig. 2). The earlier occurrence of An. ex gr. triangularis low in
the PM succession (sample NA43) remains an anomaly because
strongly sculptured posterior platforms like those illustrated
from PM (see taxonomy) are only known to occur above the
An. quadrata Zone in western Canada. Notable endemism in
the Pr. primitia Zone and equivalent strata are shown by some
Norigondolella species, with N. trinacriae occurring at PM, and
N. norica at BBR.

CONODONT TAXONOMY & NOMENCLATURE

In this section, the conodont taxonomy developed in North
America is explained and compared with that adopted at PM.
Although there are faunal differences that can be attributed
to endemism, there is far more commonality than hitherto
documented.

Generic differentiation of the Upper Triassic platform
conodonts is based primarily on the nature of the anterior
platform margins (Figure 4; Orchard, 1991a, pl. 3). Ornament
is absent or consists of rudimentary to poorly differentiated,
low or incised nodes in Quadralella (Fig. 4 a-c), Kraussodontus,
and Metapolygnathus; elevated anterior buttresses occur in
Parapetella (Fig. 4 k, 1); well differentiated nodes becoming
relatively short and sharp denticles characterize Acuminatella and
Carnepigondolella (Fig. 4 g-j); discrete and high, often apically
rounded and microreticulated nodes occur in Primatella (Fig. 4
d-f); and very high and sharp denticles occur in Ancyrogondolella
(Epigondolella sensu Orchard, 1991a, 2014; Fig. 4 m-o). Younger,
largely middle to upper Norian Mockina, Orchardella, and
Epigondolella (Fig. 4 p) also have very high and sharp denticles
(see Orchard, 2018) that reach a peak development in Mockina
englandi (Fig. 4 q).

Within each of the CNB genera, the pit migrates anteriorly
through time producing a longer posterior keel. At PM, many
species with medial to anteriorly shifted pits were combined
as Metapolygnathus (Mazza et al., 2012b), which results in
the combination of species of several BBR genera. The BBR
taxonomy works well in formerly distant Panthalassan terranes
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Figure 4 — Lateral profiles of some Upper Triassic genera: a-c, Quadralella; d-f, Primatella; g-l, Carnepigondolella; k-, Parapetella; m-o,
Ancyrogondolella; p, Epigondolella; q, Mockina. Specifically, a (flipped) = Q. carpathica (Mock), GSC 131354, sample C; b = Q. carpathica
(Mock), GSC 131248, sample 0; ¢ = Q. tuvalica (Mazza and Rigo), GSC 132604, sample 7; d (flipped) = Pr. asymmetrica Orchard, GSC 132947,
sample PHE-24, Pardonet Hill east; e (flipped) = Pr. stanleyi Orchard, beta morphotype, GSC 132591, sample PHE-23, Pardonet Hill east; f
= Pr. vanlierae Orchard, GSC 131340, sample PHE-23. Pardonet Hill east; g = C. zoae (Orchard), GSC 95203, Peril Formation, Huston Inlet,
Haida Gwaii; h (flipped) = C. anitae Orchard, GSC 132681, sample 1a; i (flipped) = C. samueli (Orchard), GSC 132718, sample C; j (flipped) =
C. spenceri Orchard, GSC 132714, sample 4; k = Pa. beattyi Orchard, GSC 132832, sample 5; | = Pa. prominens, GSC 132920, sample 18e;
m (flipped) = An. aff. vialovi (Buryi), GSC 132741, sample 10/06; n = An. quadrata (Orchard), GSC 95265, sample PH-213b, Juvavites Cove; o
= An. equalis (Orchard), GSC 131624, sample 00/B2, Pink Mt.; p = E. tozeri Orchard, GSC 95287, sample C-98518, Pardonet Hill; q (flipped) =
Mockina englandi (Orchard), GSC 95290, sample C-87005, Lewes River Group, Laberge. Samples are from the Pardonet Formation of Black
Bear Ridge unless stated otherwise. Flipped images have been re-orientated 180° horizontally for uniform views.
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such as Wrangellia (e.g., Orchard & Carter, 2013), and more
southerly, low paleolatitude regions such as Nevada in the USA
(Balini et al., 2014), where species of Acuminatella, Parapetella,
Primatella and Quadralella are recorded. Further afield, this
nomenclature has been adopted in Japan (Zhang et al., 2018;
Yamashita et al., 2016, 2018), South China (Sun et al., 2016;
Zhang et al., 2017, 2018; Jiang et al., 2019), and Turkey (Chen
& Lukeneder, 2017). These examples suggest that the BBR
taxonomic framework is widely, if not globally, applicable. The
following review is arranged alphabetically.

Genus: Acuminatella Orchard, 2013

Type species: Acuminatella acuminata Orchard, 2013

Acuminatella species differ from most contemporaneous
taxa in the strongly reduced and tapered posterior platform and
well developed posterior carina. Species bear well differentiated
anterior platform nodes or small, apically rounded denticles
that become more pronounced through the BBR section, hence
their use as subzonal indices (Ac. sagittale, Ac. acuminata) in the
lower Pr. primitia Zone. The genus is allied with Primatella and,
like that genus, appears near the base of the Pr. primitia Zone
and extends through the entire zone, including the Me. parvus
Zone extinctions.

Kozur (2003) introduced Orchardella for similar but more
denticulate middle-late Norian species, formerly referred to
Epigondolella, that he regarded as North American endemics
(Moixetal., 2007, p. 294); he selected Epigondolella multidentata
as the type species. Kozur (2003) also suggested that CNB species
was ancerstral to the younger species, but because there is no
stratigraphic continuity between the two, the older homeomorph
were referred to the new genus Acuminatella (Orchard, 2013).
The genus has been described from Haida Gwaii (Carter &
Orchard, 2013) and Nevada (Balini et al., 2014), but not outside
North America.

Genus: Ancyrogondolella Budurov, 1972
Type species: Ancyrogondolella triangularis Budurov, 1972

This genus is now used for mostly lower Norian species that
were previously assigned to Epigondolella by Orchard (1991b;
2014), plus others introduced in a recent revision (Orchard,
2018). The genus accommodates platform elements with high
and sharp anterior denticles and a bifid basal keel, features of the
first representatives in the ‘E. guadrata fauna (Orchard, 2014,
figs. 40, 41). A bifid keel may be developed in other broad-
platform Late Triassic genera, but the anterior platform ornament
is never as pronounced as in Ancyrogondolella. Sharp denticles
in Carnepigondolella are shorter, while those of Primatella are
typically high nodes or apically rounded denticles (Fig. 4). At PM,
only the “advanced Epigondolellae species” identified by Mazza et
al. (2012b) in the lower Norian are included in Ancyrogondolella.

Keel bifurcation generally arises during growth close to the
subcentral pit, with the secondary keels being widely divergent
in older representatives and much less so in the youngest species.
Ancyrogondolella is believed to have evolved from Primatella in
the early Norian, as documented in many Canadian sections

where the former replaces the latter near the top of the S.
kerri Zone (Orchard, 1991b, 2001a, b, 2014). Populations
of Ancyrogondolella and Primatella have convergent platform
shapes, but differing anterior ornamentation. Ancyrogondolella
is regarded as ancestral to middle Norian Epigondolella sensu
stricto, Mockina, and Orchardella (Orchard, 2018), all of which
differ in their carina development and lack of a primary bifid keel.

Several species of Ancyrogondolella are common to BBR and
PM, including Norian An. guadrata, An. triangularis sensu lato,
and An. uniformis. Other species differentiated within the An.
quadrata Zone at BBR (Orchard, 2014) have not been recorded
at PM, while An. rigoi is not yet found at BBR. New species of
Ancyrogondolella are anticipated in abundant undescribed faunas
of An. ex gr. triangularis from the M. dawsoni and J. magnus
ammonoid zones in B.C. The following revisions are proposed
for illustrated PM material (sample numbers in bold):

An. rigoi (= E. rigoi in Mazza et al., 2012b, pl. 6, figs. 1-7.
NA59, NA61; Mazza & Martinez-Perez, 2015, pl. 4).
NA68

An. quadrata (= E. quadrata in Mazza et al., 2012b, pl. 5,
figs. 2-10. NA6O, NA58, NA56; Mazza & Martinez-Perez,
2015, pl. 3). NA56, NAGO

An. ex gr. triangularis (= E. triangularis in Nicora et al., 2007,
pl. 4, fig. 10; =Mazza et al., 2010, pl. I1I, fig. 9). NAG8

An. ex gr. triangularis (= E. triangularis in Mazza & Martinez-
DPerez, 2015, pl. 5, figs. 1-12). NA43

An. uniformis (= E. triangularis in Nicora et al., 2007, pl. 4,
figs. 8, 9). NA43.

An. uniformis (= E. vialovi in Mazza et al., 2012b, pl. 7.3).
NA66

An. uniformis (=E. uniformis in Mazza & Martinez-Perez,

2015, pl. 5, figs. 24, 25 only). NA43

Genus: Carnepigondolella Kozur, 2003
Type species: Metapolygnathus zoae Orchard, 1991a

This genus includes upper Carnian platform conodonts with
characteristic short, sharp denticles on anterior platform margins,
and sometimes on the posterior margins too. The type species, C.
zoae, is atypical in having very well-defined, rounded nodes, but
its ancestral relationship to the denticulate species is evident in
C. anitae, in which both ornament styles are present as anterior
denticles and posterior nodes. The origin of the genus lies in older
strata than is preserved at BBR (C. gibsoni is already present near
the base), and there may be more than one lineage represented
(Orchard, 2014, figs. 17, 18).

At BBR, a succession of Carnepigondolella species ends
with the C. spenceri Subzone of the C. samueli Zone, which is
characterized by relatively small species with reduced platforms,
long blades, and anteriorly shifted pits. The same evolutionary
development occurs at PM within the “E” vialovi Zone where
Mazza et al. (2012b; Martinez Perez, 2016) have characterized
these taxa as the beginning of the Epigondolella clade. Hence, as
discussed above, realignment of the top C. samueli Zone at BBR
with a position within the “E.” vialovi Zone at PM is suggested.

Several PM species that were formerly assigned to
Carnepigondolella by Mazza et al (2012b) are here assigned to
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Quadralella (e.g., Q. carpathica, Q. tuvalica) or Primatella (Pr.
pseudoechinata, Pr. gulloae). The elements described as C. orchardi
by Mazza et al. (2012b) are examples of the genus but not the
species, which was interpreted as a Primatella species by Orchard
(2014)(see below).

The succession of Carnepigondolella species in the Ludington
and basal Pardonet formations at BBR (Orchard, 2014) includes
several species identical or allied to those recognized at PM, some
of which were assigned to Epigondolella (see above). Although
informal morphotype designations have also been assigned
to variants of C. zoae, C. pseudodicbeli, and C. samueli, all
occurrences fall within the C. samueli Zone.

C. anitae (= C. zoae B in Mazza et al,, 2010, pl. I, fig. 8.
FNP53a

C. anitae (= C. zoae in Nicora et al., 2007, pl. 3, figs. 6a-c.).
PM19

C. ex gr. milanae (= C. zoae morphs in Mazza et al., 2012b,
pl.4, figs. 1-3). PM19, NA8

C. pseudodiebeli (= Me. mersinensis in Mazza et al., 2012b, pl.
4, fig. 10). NA32

C. pseudodicbeli (= C. orchardi in Mazza, 2009, pl. I, fig. 11;
2012b, pl. 2, ﬁgs. 1, 2). FNP53, FNP88a

C. samueli (= E. vialovi in Mazza et al., 2012b, pl. 7.2).
FNP88a

C. miettoi holotype (= E. quadrata in Nicora et al., 2007, pl.
3, fig. 8). FNP88a

C. miettoi paratype (= E. quadrata in Balini et al., 2010, pl.
3, fig. 5). FNP88a

C. ex gr. spenceri (= E. heinzi in Mazza, Cau & Rigo, 2012a,
fig. 9. C-E). NA25, NA27

C. spenceri (= C. pseudoechinata in Mazza et al., 2012, pl. 2,
fig. 5). NA25

Genus: Epigondolella Mosher, 1968

Type species: Polygnathus abneptis Huckriede, 1958

As discussed previously by several authors (e.g., Kozur, 2003),
the holotype of Epigondolella abneptis is of Middle Norian,
Alaunian age and differs from similar lower Norian elements.
Orchard (2018) has argued that Epigondolella is best used for
middle Norian species that, in common with the holotype, are
broad and lack both a primary bifid keel and a strong posterior
carina. These attributes separate the genus from contemporary
Mockina and Orchardella, and the lower Norian Ancyrogondolella
(see above).

Species from the upper Carnian of PM were also assigned to
Epigondolella by Mazza et al. (2012a, b; 2018) but, as discussed
above, these were included in Carnepigondolella by Orchard
(2014). These species are considered here as end-members of
that clade, but if a separate genus was to be used, it should not
be Epigondolella because neither that genus nor its lower Norian
replacement, Ancyrogondolella, are directly related.

As discussed above, at least some records of Epigondolella
from high Carnian and low Norian strata at PM can be re-
assigned to Primatella (q.v.; Fig. 3). These specimens provided
Mazza et al. (2012b) the basis for proposing continuity between
Carnepigondolella and Epigondolella, which is disputed here.

Rather, Orchard (2014) proposed a lineage from Quadralella to
Primatella to Ancyrogondolella (formetly Epigondolella).

Genus: Kraussodontus Orchard, 2013
Type species: Kraussodontus peteri Orchard, 2013

Platform elements of this genus are characterized by largely
subparallel lateral margins of generally uniform height, and a
relatively rounded posterior margin that is never broader than
the anterior platform. The anterior margins are smooth to weakly
ornate. Both relative blade length and pit position varies. Species
of Kraussodontus are most similar to some Quadralella but differ
in their rounded, unexpanded posterior platforms.

Kraussodontus has not been widely differentiated in the past,
but has now been recognized in the late Carnian of Okinawa-
jima, Japan (Yamashita et al., 2016), and from the Taurus Mts.,
Turkey (Chen & Lukeneder, 2017). Some elements similar to
K. roberti were included in Metapolygnathus praecommunisti by
Mazza et al. (2011, fig. 3, D).

Genus: Metapolygnathus Hayashi, 1968
Type species: Metapolygnathus communisti Hayashi, 1968

The taxonomic scope of Metapolygnathus has changed in
recent decades. Orchard (1991a, b) assigned almost all platform
conodonts of Carnian age to the genus, although he recognised
revision was necessary. Many of these species were later assigned
to the new genus Carnepigondolella, or to those introduced
more recently by Orchard (2013). A more restricted scope for
Metapolygnathus limits it to the late Carnian clade around the
type species, Metapolygnathus communisti, and its cohorts with
mostly inornate platforms and an anteriorly shifted pit (Orchard,
2014). The origins of Me. dylani and Me. parvuslie in the diverse
but uncommon older elements identified as morphotypes of Me.
ex gr. communisti by Orchard (2014, see front-piece), and not
within the more ornate Quadralella praeccommunisti.

Noyan & Kozur (2007, p. 176) included four species in
Metapolygnathus: Me. communisti with two subspecies (Me. c.
communisti and Me. c. parvus — now elevated to species), Me.
linguiformis, Me. angustus, and Me. multinodosus. The last of
these was exceptional in bearing common anterior nodes. Later
Mazza et al. (2012b, p. 112) restricted the genus to include
only elements with an “.. absence of ornamentation or, at most,
the presence of tiny nodes at geniculation points”, a diagnosis
followed by Orchard (2014). However, more recently Mazza &
Martinez-Perez (2015, pl. 6) have divided the Me. communisti
group into three morphotypes: A bears 1-2 anterior nodes; B
corresponds to Me. multinodosus, and C has no nodes. At BBR,
morphotypes A and B are included in Me. ex gr. communisti
by Orchard (2014), whereas morphotype C, or Quadralella
multinodosus, does not occur.

Other species previously assigned to Metapolygnathus that
bear larger, more developed anterior nodes, i.e. Me. mersinensis
and Me. primitia, are now referred to Primatella (see below).
This includes Me. mazzai, the growth series of which (Mazza
& Martinez-Pérez, 2015) includes Pr. asymmetrica. Notably,
these authors also illustrated growth series of Me. communisti
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morphotypes that included elements close to Pr. asymmetrica (as
morphotype B) and of Parapetella irwini (as morphotype C). This
diversity appears to be a consequence of a focus on the anteriorly
shifted pits of these elements, a feature that is seen also in species
of Parapetella, Primatella, and Quadralella.

Metapolygnathus communisti is rare at BBR, where Orchard
(2014, fig. 46) differentiated five uncommon morphotypes of
Me. ex gr. communisti, all of which either lack anterior nodes or
have one or two poorly developed; they differ from one another
in their anterior profile and platform outline. Morphotypes
1-4 appear well below the CNB at BBR, before the common
occurrence of the Quadralella praecommunisti. The inclusion
of Morphotypes 1-4 into Me. praecommunisti by Mazza et al.
(2018) broadens the scope of that species even more than its
already substantial variability (Mazza etal., 2011), and obscures a
more complex phylogeny. Two lineages may be represented - one
with ornate Quadralella species (including Q. praecommunisti,
Q. multinodosus), and a second with inornate Metapolygnathus
species - both showing anterior pit migration, and ultimately
reduction of the platform. The types of Me. dylani from BBR are
mostly inornate like those of Me. ex gr. communisti, whereas most
of those illustrated from PM are ornate. The final expression in
these two lineages may be the diminutive and smooth Me. parvus,
and some diminutive and noded specimens called Me. echinatus
by Mazza et al. (2018, pl. 5).

Regarding Metapolygnathus parvus, Orchard (2014)
differentiated three morphotypes (alpha, beta, and gamma) at
BBR, each showing progressive reduction of the already small
platform, ending in the platform-less gamma morphotype. As
discussed above, the alpha morphotype corresponds broadly to
the holotype of Me. parvus, but the beta and gamma morphotype
of Mazza et al. (2018) differ. The beta morphotype of Orchard
(2014) does not correspond to Gladigondolella echinata Hayashi,
whose short platform has a distinctive anterior node on each
margin. The identification of Me. echinatus in Orchard (2007c,
pl. 2, figs 10-12, 22-24) was incorrect because those specimens,
which were subsequently re-assigned to the Me. parvus beta
morphotype (Orchard, 2014), are smooth or have only a few low
nodes. Rather, strongly noded specimens like those referred to
Me. echinatus by Mazza et al. (2018) are examples of Parapetella
destinae, and one is closer to Pa. n. sp. D of Orchard, 2014
(Mazza et al., 2018).

Regarding the holotype of Gondolella echinata, the age of
which is uncertain, Carter & Orchard (2013, p. 72, fig. 3. 10-12)
discussed and illustrated a specimen from the top of the C. samueli
Zone in Haida Gwaii that strongly resembles the holotype: they
assigned it to Carnepigondolella and regarded it an end-member
of that clade. Therefore, use of the specific name echinatus for
Me. parvus Subzone CNB indices is discouraged.

Genus: Paragondolella Mosher, 1968

Type species: Paragondolella excelsa Mosher, 1968

Mazza et al. (2009) emphasized the lower side morphology as
diagnostic for this genus, namely a posteriorly situated pitand no
bifurcation of the keel, as well as a lack of any platform nodes on
the upper surface. Also regarded as important features of the type

species, P excelsa, are the high anterior carina, and the absence
of anterior geniculation points. The latter distinguishes it from
all Quadralella species. Typical Ladinian Paragondolella species
often have a broad, relatively flat platform, above which the carina
is conspicuous in lateral view. Although platform ornament is
generally absent, some species, e.g., P. inclinata, occasionally
exhibit some weak anterior nodes (e.g., Orchard, 2007a, fig. 3.
1-3). Furthermore, according to Orchard (2005), the genus has
a distinctive multielement apparatus.

Paragondolella certainly ranges into the lower Carnian, but
probably no higher. Most of the species assigned to the genus
by Mazza et al. (2009) should be assigned to Quadralella. This
includes elements from PM assigned to P praelindae that,
unlike the holotype, display a geniculation point and free blade.
These PM elements (Mazza et al., 2012b; Rigo et al., 2018) are
probable examples of Q. lobata, characteristic of the C. samueli
Zone at BBR.

Genus: Parapetella Orchard, 2013.
Type species: Parapetella prominens Orchard, 2013.

The genus Parapetella was introduced for conodont elements
from BBR with mostly smooth anterior margins that become
increasingly elevated into prominent buttresses. This genus has
an uncertain origin but appears widespread in the upper Carnian
(e.g., Carter & Orchard, 2013; Orchard, 2014), and apparently
occurs in the lower Carnian of South China (Jiang, 2016). In
common with several contemporaneous genera, species exhibit
anterior pit migration and progressive diminution in the Me.
parvus Subzone.

Parapetella was not explicitly differentiated at PM (Rigo et
al., 2018; Mazza et al., 2018) although, as discussed above,
Pa. destinae is one species that does occur there (identified as
Metapolygnathus echinatus). Mazza et al. (2018, p. 88) also
stated that Parapetella pumilio, Pa. irwini, Pa. johnpauli, and
Pa. willifordi occurred at PM as “Tethyan morphotypes of the
Me. communisti fauna”, although only Pa. irwini was illustrated
(i.e. Mazza et al., 2012b, see list below). Similarly, Mazza et al.
(2018) synonymized Metapolygnathus n. sp.Y of Orchard, 2007c,
as one of many morphotypes combined in an equally broad
Metapolygnathus praccommunisti; they did not figure a specimen
of the species, which was subsequently described by Orchard
(2014) as Parapetella broatchi. Hence, up to eight species of
Parapetella differentiated at BBR may also occur at PM:

2Pa. broatchi (= Me. n. sp. Y Orchard, 2007¢ = in synonymy
with Me. praecommunisti in Mazza et al., 2018, p. 90.

Pa. clareae (= Me. praecommunisti in Mazza et al., 2011, pl.
2F only). NA18

Pa. destinae (= Me. echinatus in Mazza et al., 2012b, pl. 8,
figs. 7, 8; =Mazza et al., 2010, pl. 11, fig. 12; =Mazza et al.,
2018, fig. 5.4 only). NA39

Pa. irwini (= Me. communisti in Mazza et al., 2012b, pl. 8,
fig. 6 only). NA37

Pa. aff. irwini (= Me. communisti morphotype C, in Mazza &
Martinez-Perez, 2015, pl. 6, fig. 25). NA36-NA39

Pa. johnpauli, Pa. willifordi, Pa. pumilio (= recorded but not
figured as “Tethyan morphotypes of the Me. communisti
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fauna” in Mazza et al., 2018, p. 88).
2Pa. n. sp. D of Orchard, 2014 (=Me. echinatus in Mazza et
al., 2018, fig. 5.2). PM27

Genus: Primatella Orchard, 2013
Type species: Epigondolella primitia Mosher, 1970

Primatella is characterized by larger and higher nodes or
denticles than those of Carnepigondolella, and much more
differentiated than those of Quadralella; those of Ancyrogondolella
are much higher and sharper than in Primatella (Fig. 4). The
genus appears rarely at the end of the C. samueli Zone at BBR and
thereafter becomes more common until it dominates the lower
Norian fauna above the Me. parvus Subzone in BBR. Primatella
bridges the gap between the disappearance of Carnepigondolella
(top C. samueli Zone) and the appearance of the Ancyrogondolella
late in the S. kerri ammonoid Zone. Primatella is regarded as
the precursor to Ancyrogondolella, but not as a derivative of
Carnepigondolella but rather evolving from ornate Quadralella
species (Orchard, 2014, figs. 20, 23). Pr. primitia itself is
rather rare but it is retained as the zonal name-giver for sake of
consistency.

Several ornate species previously assigned to Metapolygnathus
- namely Epigondolella primitia, Me. mersinensis, and Me. mazzai
- are assigned to Primatella. Also, a variety of elements from PM
assigned to Carnepigondolella and Epigondolella are regarded as
examples of Primatella. As discussed by Orchard (2014, p. 97),
the holotype of Me. mazzai (in Mazza et al., 2012b) from PM
(chosen by Karddi et al., 2013) appears to be fall within the range
of Me. mersinensis. Those elements included in Me. mersinensis
and illustrated by Mazza et al. (2012b) are regarded as a variety
of Primatella and Quadralella species (see synonymy in Orchard,
2014, p. 94), including Pr. aff. asymmetrica and Pr. subquadrara.
The Me. mazzai growth series of elements illustrated by Mazza &
Martinez-Pérez (2015, pl. 7, fig. 15) also includes Pr. asymmetrica,
whereas those illustrated by Karddi et al. (2013) have much larger
anterior denticles than in Primatella and are regarded as closer to
Ancyrogondolella quadrata.

In addition to the Primatella species discussed above, two
other species have been misinterpreted at PM but are clearly
useful for trans-Panthalassan correlation, namely P bifida and Pr.
triangulare. Orchard (2014, p. 89-90) included Mezrapolygnathus
linguiformis sensu Mazza et al. (2012b) in synonymy with 2
bifida but he did not regard the holotype of Me. linguiformis as
conspecific as claimed by Mazza et al. (2018, p. 88). In contrast
to P bifida (and Me. linguiformis sensu Mazza et al.), Hayashi’s
species differs in having no anterior nodes, as previously discussed
by Noyan & Kozur (2007, p. 172).

A second example concerns Ancyrogondolella rigoi. Mazza
et al. (2018, p. 88) synonymized Primatella triangulare with
Epigondolella rigoi but, as described by Orchard (2014, p. 105),
Pr. triangulare differs in its posterior platform, lower anterior
denticles, longer carina, and less pronounced keel bifurcation.
Younger specimens of typical An. rigoi, which Noyan & Kozur
(2007) regarded as diagnostic of a zone occurring above that of
An. quadrata, are well illustrated by Mazza et al. (2012b). The
long range attributed to An. rigoi by Rigo et al. (2018) apparently

combines both that species and Pr. triangulare.

Other species assigned to Primatella at BBR include
Epigondolella orchardi, and E. pseudoechinata, both of which
have been included in Carnepigondolella at PM (Rigo et al.,
2018). The type species of E. orchardi is from the lower Norian
E. orchardi — N. navicula Zone of Slovakia (Kozur, 2003), the
same age as attributed to Primatella orchardi at BBR. Specimens
of C. orchardi illustrated by Mazza (2009, 2012b) are older and
close to C. pseudodiebeli beta morphotype at BBR, whereas those
illustrated by Nicora et al. (2007) and Balini et al. (2010) are
probably true Pr. orchardi. As interpreted by Orchard (2014),
Pr. ex gr. pseudoechinata embraces broad variation, but the only
example of “Carnepigondolella” pseudoechinata illustrated from
PM (Mazza et al., 2012b) is re-interpreted here as C. spenceri
(see above).

The youngest species assigned by Mazza et al. (2018) with
question to Carnepigondolella, C.? gulloae, is also interpreted here
as a Primatella species with affinity with, and a possible origin
in, Pr. rotunda. The appearance of the species at PM is sudden
and without clear ancestry, so its FAD (T3 of Rigo et al., 2018)
lacks context.

Pr. aff. asymmetrica (= Me. communisti morphotype B in Mazza
& Martinez-Pérez, 2015, pl. 6, fig. 15). NA36-NA39

Pr. asymmetrica (= Me. mazzai in Mazza & Martinez-Perez,
2015, pl. 7, fig.15 only). FNP117

Pr. bifida (= Me. linguiformis in Mazza et al., 2012b, pl. 8, fig.
11; = Balini et al., 2010, pl. 4, fig. 1). NA39

Pr. mersinensis (= Me. communisti B in Mazza et al., 2010, pl.
111, fig. 4). NA46

Pr. orchardi (= C. orchardi in Nicora et al. 2007, pl. 3, fig.

11). NA33

Pr. orchardi (= C. orchardi in Balini et al., 2010, pl. 3, fig.
30. NA53

Pr. aff. permica (= E. rigoi in Nicora et al., 2007, pl. 3, fig.
12). NA33

Pr. aff. permica (= E. vialovi in Mazza et al., 2010, pl. II, fig.
4). NA29

2Pr. rhomboidale (= E. uniformis in Mazza et al., 2012b, pl.
7, fig. 1). NA46.

Pr. ex gr. rotunda (= C.2 gulloae in Mazza et al., 2012b, pl. 1,
figs. 4, 6-9). FNP134, PM30a

Pr. subquadrata (= Me. mersinensis in Mazza et al., 2012b, pl.
4, fig. 7, 9). NA30, NA34

Pr. subquadyata—Pr. permica (=E. quadrata in Nicora et al.,
2007, pl. 3, fig. 9. NA30; in Mazza et al., 2010, pl. IL, fig.
3). FNP112

Pr. triangulare (= E. rigoi in Nicora et al., 2007, pl. 4, fig. 6 =
Mazza et al., 2010, pl. 11, fig. 5). NA28

Pr. aff. triangulare (= C.2 gulloae in Mazza et al., 2012b, pl.
1, fig. 5 only). FNP134

Genus: Quadralella Orchard, 2013
Type species: Quadralella lobata Orchard, 2013

The oldest upper Carnian species at BBR are assigned to
Quadpralella, a genus introduced by Orchard (2013) with a
type species, Q. lobata. The genus is characterized by anterior
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geniculation points and anterior ornament that varies from
absent to low, weakly differentiated, and irregular nodes. In
lateral view, these nodes are often defined by incisions into
the anterior platform margins whereby the nodes do not rise
above the posterior platform margins as they do in Primatella
(Fig. 4). Paragondolella lacks geniculation points, and both
Carnepigondolella and Ancyrogondolella have more organized and
sharper anterior denticulation.

Although focussed on upper Carnian taxa, Orchard (2013,
p. 456) thought it probable that older taxa should be referred
to Quadralella, including Gondolella polygnathiformis and
Metapolygnathus nodosus. This comment seems to have been
overlooked by Kili¢ et al. (2015), who subsequently introduced
a new genus, Hayashiella, with the unfortunate choice of Me.
nodosus as the type species. The holotype of that species is of
uncertain age and unknown morphological range because it
originated in a poorly preserved and stratigraphically mixed
fauna extracted from chert in Japan (Hayashi, 1968). In fact,
the holotype of Me. nodosus has been favourably compared to
‘Epigondolella’ carnica (see discussion in Noyan and Kozur, 2007,
p. 173), which was chosen as the type species of a second new
genus Mazzaella Kilig et al. Notwithstanding those uncertainties,
the scope of Hayashiella Kilig et al. is embraced by Quadralella.
Besides, the name Hayashiella is preoccupied for a beetle (Vives &
Ohbayashi, 2001). Hence, Hayashiella is both a junior synonym
and a junior homonym.

Mazza et al. (2018) have recently argued for the suppression
of Quadpalella because the lower Carnian Metapolygnathus lobatus
was erroneously mislabelled “ Quadralella lobatus” (sic) in a review
paper on Middle to Upper Triassic conodonts (Chen atal., 2015,
fig. 4). This apparent homonymy arose due to an uncritical
re-assignment of all lower Carnian species formerly referred to
Metapolygnathus by Orchard (2007a) to Quadralella subsequent
to the former genus being more narrowly defined in the upper
Carnian (Orchard, 2014). The lower Carnian Me. lobatus is not
a Quadralella but an example of Paragondolella, probably derived
from P, inclinata. Quadralella lobata Orchard, 2013 remains the
type species of the genus Quadralella.

The species Quadralella praecommunisti, which first appears
in the Ac. angusta — Me. dylani Subzone of the Pr. primitia Zone
at BBR, is regarded as an advanced Quadralella with a forward
shifted pit, and not a precursor to the inornate Metapolygnathus
communisti. Elements of the latter group, which are rare at BBR,
occur much earlier at BBR and are thought to be unrelated to Q.
praecommunisti, which is common in the latest Carnian there. At
PM, Q. praccommunisti appears earlier but is much broader in
scope (Mazza et al., 2011), including some elements similar to
Parapetella and Kraussodontus. There appears to be no examples
at BBR of more advanced species with a more anteriorly shifted
pit, as in Q. multinodosus, or with reduced platforms, as in some
ornate elements referred to Me. dylani by Mazza et al. (2018).

More ornate species of Quadralella, such as Q. kathleenae
and Q. willistonensis, may also occur at PM although it is
difficult to evaluate isolated specimens. They too occur in the C.
samueli Zone, earlier than at BBR. The two species mentioned
above are characterized by posterior pits, unlike the similar Q.
praccommunisti and Q. mcrobertsi, which are also noded species

but with more medial pits (see below). The following species
assigned to Quadralella explicitly occur at both BBR and PM
(from Mazza et al., 2012b; Rigo et al., 2018, with their former
generic assignment):

Q. angulata (previously Carnepigondolella)

Q. carpathica (previously Carnepigondolella, then Hayashiella)
Q. noah (previously Paragondolella)

Q. oertlii (previously Paragondolella)

Q. praecommunisti (previously Metapolygnathus)

Q. tuvalica (previously Carnepigondolella, then Hayashiella)

Additional species of Quadralella interpreted from the literature
may include:

2Q. kathleenae (= C. pseudodiebeli Morphotype A in Mazza et
al., 2012b, pl. 2, fig. 8). FNP53a

Q. lobata (= P praelindae in Mazza et al., 2012b, pl. 7, fig.
13; Rigo et al., 2018, fig. 6.6d). NA4a

Q. lobata (= R noah in Mazza & Martinez-Perez, 2015, pl. 1,
figs.1-5 only). NA2, PM3a

Q. praccommunisti (= Me. praecommunisti in Mazza et al.,
2011, fig. 2C, fig. 3C, E G, H).

Q. willistonensis (= Me. mersinensis in Mazza et al., 2012b,

pl. 4, figs., 5, 8). FNP53, NA22

PLACEMENT OF THE CARNIAN-NORIAN
BOUNDARY

Event horizons recognized at BBR and suggested primary
options for definition of the CNB cluster around the range
of Metapolygnathus parvus: the base (T2 at PM), top (-T3 at
PM), or a datum within Me. parvus Subzone. The earlier end-
Carnepigondolella event (top C. samueli Zone) is also a primary
biostratigraphic marker but it clearly lies within the upper
Carnian even though the position of PM-T1 is disputed.

The highest suggested position for the CNB is at the base of
the Carnepigondolella? gulloae Zone at PM, or the top of the Me.
parvus Subzone at BBR, which are close but not coincident. The
event is marked at BBR by the disappearance of all the diminutive
conodont species that dominate the upper division of the Me.
parvus Subzone. This might be viewed as a natural Norian base
after disappearance of Carnian stocks, but the datum does not
clearly correspond to the appearance of any common conodont
taxon. At PM, the first appearance datum (FAD) of Primatella
gulloae is suggested to be an approximation of this level, although
Metapolygnathus parvus ranges higher there (Fig. 3). However,
as discussed above, Pr. gulloae is regarded as a member of the
Pr. rotunda group, which appears at BBR below the Me. parvus
Subzone and may contain a precursor for Pr. gulloae. At the
moment, in the absence of a known ancestry, the choice of Pr.
gulloae as a CNB index is problematic.

In support of defining the CNB at the top of the Me.
parvus Subzone is the totality of ammonoid data from British
Columbia. Ammonoid fauna of the traditionally latest Carnian
Klamathites macrolobatus Zone (see Tozer, 1994) is known from
many western Canadian localities and many of them have also
yielded conodonts. Figure 5 shows the subzonal assignment
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Figure 5 — Composition of Klamathites macrolobatus Zone ammonoid faunas (partly after Tozer, 1994), accompanying halobiids, and their
assignment to conodont subzones of the Pr. primitia Zone. The oldest collections are in section at Black Bear Ridge, two are archive from Pardonet
Hill (see Orchard, 2014, fig. 30), two are archive from elsewhere in northeastern B.C. (Mount Laurier, Mount McLearn), and three are from Kunghit
and Huxley islands, Haida Gwaii (Wrangell Terrane). These collectively demonstrate that the stratigraphic scope of the K. macrolobatus Zone
embraces the Pr. primitia Zone up to and including the Me. parvus Subzone at Black Bear Ridge, including the ~5 m CNB interval that lacks
ammonoid zonal indices. The occurrences of the lower and upper S. kerri Zone indices (vertical bars) at BBR are also shown. (Modified from

Orchard, 2014, fig. 31).

of nine conodont collections, which are from a variety of
K. macrolobatus Zone faunas and localities, most of them
characterized by the diagnostic ammonoid Anatropites. At BBR
it has been demonstrated that this ammonoid zone corresponds
to the Acuminatella sagittale - Parapetella beattyi and Ac. angusta
- Metapolygnathus dylani subzones of the lower Pr. primitia
Zone, while other localities support that calibration and extend
it upward through the Me. parvus Subzone and just beyond. A
single K. macrolobatus Zone collection (lacking Anatropites) from
Huxley Island, Haida Gwaii contains only Primatella conodonts
and is regarded as younger than the Me. parvus Subzone. Both
this latter collection and a second from nearby on Huxley Island
may also contain Halobia austriaca, which is consistent with the
FAD of that species in the Me. parvus Subzone of BBR.

Hence, it appears that the totality of the Me. parvus Subzone,
as well as the entire lower Pr. primitia Zone, is embraced by the
traditionally uppermost Carnian K. macrolobatus Zone. This
also conforms to the lowest occurrence of the lower Norian
S. kerri Zone species Guembelites clavatus immediately above

the Me. parvus Subzone at BBR, low in the Pr. asymmetrica -
Norigondolella sp. Subzone. A consequence of a position at the
base of the Me. parvus Zone for the CNB places the upper part
of the “Carnian” K. macrolobatus ammonoid Zone in the Norian.

The choice of the base Me. parvus Subzone/ Zone as the
definitive CNB datum, as advocated by Mazza et al. (2018), has
many advantages in spite of the realignment of the ammonoid
zones. These are summarized in Figure 6. As has been noted
previously, the major faunal turnover occurs around the Me.
parvus Subzone where most long-ranging Carnian genera and
numerous species disappear over several metres of strata. Prior to
this, there is a rise in the abundance of small conodont elements,
the forebears of which are known in the preceding beds (Orchard,
2014, figs. 13, 15, 16), and then they too disappear (Fig. 6,
A). Two genera, Acuminatella and Primatella, continue on and
in higher strata are joined by Norigondolella. This turnover is
complete by the end of the Me. parvus Subzone, whereas its
lower division is marked by most of the extinctions and by first
appearances of key macrofaunal elements, including Halobia
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austriaca and Prerosirenites (Fig. 2); these latter taxa have been
regarded as Norian indicators.

Geochemical data from BBR point to underlying causes for
the biological events. Williford et al. (2007; Fig. 6, B) identified
a small but significant negative excursion of the carbon isotope of
total organic carbon with a minimum precisely between the lower
and middle divisions of the Me. parvus Subzone. This suggests
the presence of low oxygen conditions that were conducive to
efficient burial of organic matter (Williford et al., 2007). Later,
Onoueetal. (2015) presented further geochemical data that they
interpreted as recording a period of deep-water anoxic deposition
(indicated by the V/(V + Ni) and V/Cr indices), and reflecting
a transition from dysoxic conditions in the Ac. acuminata—Da.
prominens Subzone to anoxic conditions in the Me. parvus
Subzone; 8"°C_ values increased through these zones and then
decreased in the Pr. asymmetrica—Norigondolella sp. Subzone (Fig.
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6, C). Onoue et al. (2015) linked the conodont faunal turnover
event with a widespread oceanic anoxic event, but noted ¥Sr/*Sr
and 8”C_ | isotopic data largely exclude the possibility that the
event was triggered by dissociation of methane hydrates and
degassing related to large-scale volcanic activity.

Very recent work has looked at the oxygen isotopes preserved
in conodont apatite (Sun et al., 2019; in press; Fig. 6, D).
These indicate temperature increase of several degrees into the
Me. parvus Subzone followed by lower temperatures in the Pr.
asymmetrica — Norigondolella Subzone. Sun et al. (2019) also
determined that Quadralella and Norigondolella were cooler/
deeper water genera. The first of these conodonts disappears as
both deep water anoxia and elevated temperatures are indicated,
whereas Norigondolella appears and becomes common during
the cooling trend in the earliest Norian. All these events provide
boundary proxies for definition of the CNB. The FAD of
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Figure 6 — Conodont fauna and zonation through a 5 m boundary interval in the Pardonet Formation between the highest K. macrolobatus
(Anatropites) Zone and lowest S. kerri (Guembelites) Zone ammonoid indicators. A. Shows replacement of typical Carnian conodonts (pale gray
bars) by Primatella and Acuminatella (medium gray bars) with an intervening bloom of diminutive derivatives (black bars) during the Me. parvus
Subzone (after Orchard, 2014, fig. 6). B. Peak negative organic carbon isotope excursion at the lower-middle division boundary of the Me. parvus
Subzone (after Williford et al., 2007). C. Isotope geochemistry showing excursions at the base and top of the Me. parvus Subzone (after Onoue
et al., 2016). D. Paleotemperatures derived from conodont apatite 5'®0,, showing an increase in temperature in the Me. parvus Subzone and
subsequent drop. Data are calibrated to NBS 120c with an analytical uncertainty of +0.14 %. (1 o). Genus-specific depth corrections are applied;
circle, hexagon and square stand for data measured on Quadralella, Primatella and Carnepigondolella, respectively (after Sun et al., 2019; in press).
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Metapolygnathus parvus alpha morphotype at the base of the Me.
parvus Subzone/ Zone may serve that purpose. However, the
scope of this index fossil and its ancestry need to be well defined.
Notably, Primatella asymmetrica and Pr. rhomboidale also appear
at the base of the Me. parvus Zone at BBR and are known to
occur at PM. Similarly, the FAD of Parapetella johnpauli and Pa.
willifordi mark the base of the middle division of the Me. parvus
Subzone at BBR, and these too are noted to occur at PM. None
of these species have been well documented at PM so their full
utility remains unknown.

SUMMARY

The conodont taxonomy about the Carnian-Norian boundary
(CNB) interval at the GSSP candidate at Black Bear Ridge
(BBR), British Columbia is reviewed and compared with that
used at Pizzo Mondello (PM), Sicily. Correlation of these sections
has been impeded to some extent by fossil endemism but it is
concluded that differing taxonomic approaches have obscured
similarities. Both the North American (BBR) and Tethyan
(PM) conodont successions contain species of the platform
genera Carnepigondolella, Ancyrogondolella, ? Kraussodontus,
Metapolygnathus, Norigondolella, Parapetella, Primatella, and
Quadralella; only Acuminatella and some non-platform genera
appear to be endemic, although there may be endemic species.
Further nomenclatural and taxonomic revisions revise the use
of several generic names at PM: Quadralella is valid and a senior
synonym of Hayashiella; Paragondolella is an inappropriate name
for upper Carnian species; “Epigondolella” species at PM are
revised as Carnepigondolella in the upper Carnian, as Primatella
around the CNB, and as Ancyrogondolella in the lower Norian.
The evolutionary trend of anterior pit migration is recognized in
all 6 genera that exist in the lower part of the Pr. primitia Zone
at BBR (Orchard, 2014) so the practise of combining in a single
genus all specimens with an anterior pit (as in Metapolygnathus)
obscures relationships.

These revisions suggest that faunal turnover intervals at PM-
T1 and -T3 were not endemic events (Mazza et al., 2018, pp. 83,
88, 90) but can be recognized at BBR by reference to evolutionary
events in, respectively, Carnepigondolella and Primatella. At PM,
these are cast as, respectively, a transition from Carnepigondolella
to Epigondolella (T1), and as a sudden appearance of C.? gulloae
(T3). At BBR, the transitional species near the top of the C.
samueli Zone are all included in Carnepigondolella, whereas the
C.? gulloae fauna is allied to, and is now assigned to, the Primatella
fauna that dominates above the Me. parvus Subzone.

Hence, it is concluded that: the top of the C. samueli Zone
at BBR is equivalent to a position within the “E.” vialovi Zone
at PM; the overlying zone containing Primatella species crosses
the CNB in both sections, including Pr. asymmetrica, Pr. bifida,
Pr. aff. permica, ?Pr. rhomboidale, Pr. subquadrata, and Pr.
triangulare; correlation of the Me. parvus Subzone within the Pr.
primitia Zone s strengthened by these and other revised conodont
occurrences, including Parapetella destinae, Pa. johnpauli, Pa.
willifordi, Pa. pumilio, and Pa. irwini; and the well-known
lower Norian succession of Ancyrogondolella quadrata followed

by An. triangularis in western Canada appears corrupted at PM
(sample NA43).

As previously concluded, the Me. parvus Sub-/ Zone can
be correlated between both sections based on the FAD of the
nominal conodont (PM-T2) as well as the demise of many typical
Carnian taxa, and is a suitable datum for definition of the CNB.
However, the morphological scope of the index species and its
morphotypes needs agreement, as does its evolutionary cline.
Orchard (2014, front piece) illustrated the progression from
Metapolygnathus ex gr. communisti to Me. dylani to Me. parvus,
but these did not include ornate elements like those shown by
Mazza et al. (2018), for which reason Quadralella praecommunisti
and Q. multinodosus are excluded from that genus.

It is demonstrated that, based on both BBR and other British
Columbian locations from where diagnostic ammonoid faunas
are known in association with conodonts, a CNB defined at the
base of the Me. parvus Subzone has the effect of placing the upper
part of the traditional Carnian K. macrolobatus ammonoid Zone
in the Norian. On the plus side, additional fossil (e.g., Halobia
austriaca, Pterosirenites sp.) and geochemical proxies coincide
with the Me. parvus Subzone.

At BBR, the highly resolved taxonomy provides numerous
morphospecies as guide fossils. It also provides documentation
of a progressive diminution of surviving clades around the
CNB, particularly in Metapolygnathus and Parapetella. These
observations have not been explicitly recorded at PM where the
Me. parvus Zone (~12 m thick) is undifferentiated, although the
presence of diminutive taxa is indicated. This biological event
appears related to geochemical observations at BBR that imply
paleoecological stress in terms of both anoxia and temperature.
Considering generic preferences, the disappearance of Quadralella
and the later appearance of common Norigondolella may reflect
the direct impact of these changes.
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FROM THE SECRETARY

VOTING RESULTS FOR NEW SUBCOMMISSION ON TRIASSIC
STRATIGRAPHY EXECUTIVE, OCTOBER 30, 2019

Following IUGS and ICS statutes, a new slate for the 2020-2024 STS Executive is required by the close of 2019. The
slate of candidates were nominated by the current executive. Ballots were sent by e-mail to all 24 voting members of
the STS. Twenty-two completed ballots were returned by the specified time for a return rate of 92% and the results are
tabulated below:

Yes No Abstain % Affirmative
For Chair: Zhong-Qiang Chen 21 1 0 87.5
For Vice Chair: Wolfram Kiirschner 20 1 1 83.3

Both Zhong-Qiang Chen (Wuhan, China) for Chair and Wolfram Kiirschner (Oslo, Norway) for Vice Chair were dully
elected for a four-year term. Chair elect Zhong-Qiang Chen has appointed Yadong Sun (Erlangen, Germany) to serve
as the new secretary of the Triassic Subcommission. The newly elected executive will begin their terms to coincide with
the start of the 36" International Geological Congress (Delhi, March 2020) at which time Mark Hounslow will assume
the position of Past Chair.

Duly submitted,

Christopher McRoberts
STS Secretary
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Publication Announcement

Early-Middle Triassic boundary interval: Integrated chemo-
bio-magneto-stratigraphy of potential GSSPs for the base
of the Anisian Stage in South China. By Yan Chen, Haishui
Jiang, James G. Ogg, Yang Zhang, Yifan Gong, & Chunbo
Yan, 2019. Earth and Planetary Science Letters, [access on-line
23 Oct 2019]. https://doi.org/10.1016/j.epsl.2019.115863
[Includes an additional 29-page PDF supplement, plus an Excel
supplement of 7 worksheets including full demagnetization
data for all samples, stable isotopes, TSCreator visualization
datapacks, etc.]

Highlights

The Wantou section (Guangxi province) S. China) had been
previously studied for ammonoid, conodont and carbon-isotope
stratigraphy (Galfetti et al., 2007, 2008) and the main events and
trends are bracketed by a succession of a dozen volcanic ashes
that have yielded ID-TIMS U-Pb ages (Ovtcharova et al., 2006,
2015). This new study added a detailed magnetostratigraphy and
enhanced the conodont and stable isotope stratigraphy for high-
resolution global correlation, plus replicated the main magneto-
biostratigraphic events in an additional section at Youping. The
combined results indicate that the Wantou section is an ideal
candidate for the Early-Middle Triassic boundary stratotype. The
preferred level for the Anisian GSSP is a horizon that records the
first Chiosella timorensis s.str. conodont near the brief polarity
chron MT1n.

Abstract—The Wantou and Youping sections of Guangxi,
South China provide a detailed high-resolution integrated
calibration of the Early-Middle Triassic boundary succession for
lithostratigraphy, volcanic episodes, conodont first occurrences
(FOs), ammonoid biostratigraphy, geomagnetic polarity,
inorganic carbon isotopes, sea-surface temperatures derived
from conodont-apatite oxygen-isotopes, and ID-TIMS U-Pb
radiometric dating. The upper Spathian (late Early Triassic)
magnetostratigraphy is characterized by normal polarity
(magnetozone LT9n) that encompasses the FOs of the typical
Spathian conodonts Triassospathodus homeri and Gladigondolella
carinata, the late Spathian Neopopanoceras haugi ammonoid zone
and the beginning of a progressive positive shift in inorganic
carbon isotopes. The overlying reversed polarity interval (LT9r)
contains two brief normal-polarity subzones (MT1n and MT2n)
that can be recognized in several other marine and terrestrial
sections. The FO of conodont Chiosella timorensis sensu stricto,
a proposed base-Anisian global marker, is near MT1n and near
the end of the positive §”C_ , excursion. Sea-surface temperatures
were reported to have cooled by 4°C during this rise in 6°C_,
suggesting a sequestration of carbon dioxide. The lowermost
Anisian at Wantou and Youping is dominated by normal polarity
(MT3n, with the presence of one major reversed-polarity subzone
MT3n.1r), contains the FO of typical Anisian conodonts

(Gladigondolella tethydisl Magnigondolella alexanderi), and has the
onset of a plateau in inorganic carbon isotopes values (stabilizing
around +4%o). The combination of the FO of conodont Chiosella
timorensis s.str., the brief normal polarity zone (MT1n) and the
last portion of the rising carbon-isotope trend are suitable for
primary proxies for global correlation of the Early-Middle Triassic
boundary (base of Anisian) to other marine and non-marine
settings. Radiometric dates at the Wantou and at the Guandao
sections, coupled with a composite cyclostratigraphy for Early
Triassic through Anisian, indicate that the FO of the conodont
Chiosella timorensis s.str. is at approximately 246.7 Ma.

Additional details and figures

The Wantou section (24.5915°N, 106.8625°E) at Jinya,
Fengshan County, Guangxi province, South China, and the
Youping section (24.9583°N, 206.5391°E), about 52 km
northwest of the Wantou section (Fig. 1), have a similar
lithological conformable succession of thick-bedded limestone
with abundant bioclasts (Unit V of the Luolou Fm), transition
beds of thin-bedded, siliceous mudstone containing calcareous
nodules and the basal Baifeng Fm with laminated shale (Figs.
2 and 3). This succession is punctuated by a series of fine- and
coarse- grained volcanic ash layers, of which the thickest are
known informally as the “Green Bean Rock”, that have yielded
precise radiometric ages.

The conodont biostratigraphy at Wantou in this study
embraced the Early-Middle Triassic boundary conodont faunal
turnover from previous studies, which is the complete replacement
of late Spathian assemblages of Triassospathodus, Spathicuspus and
Novispathodus by basal Anisian fauna of Gladigondolella, Chiosella
and Neogondolella (Magnigondolella). There are five conodont
appearance events identified as expedient in constraining the
boundary interval in the Wantou and on a global scale. They
are, in ascending order: FO of 7. homeril Tr. ex gr. homeri; FO
of Gl. carinata; FO of Ch. timorensis s.str.; FO of Gl. tethydis;
and FO of Magnigondolella alexanderil Ng. ex gr. regalis (Fig. 2).

The Wantou section is dominated by normal polarity, with one
significant reversed-polarity zone spanning the EMTB interval
and another at the top (WT2r). The overall generalized polarity
pattern is consistent with the cycle-tuned geomagnetic polarity
time scale (GPTS) for the Early-Middle Triassic (Hounslow
and Muttoni, 2010; Li et al., 2016, 2018; Ogg et al., 2016).
Based on the conodont distribution and inorganic carbon
isotope trends, polarity zone WT1n is equivalent to LT9n of
Hounslow and Muttoni (2010), subzone WT1r.4n as MT1n,
WT1r.7n as MT2n, and WT2n as MT3n (Fig. 2). The WT1r
(EMTB interval) contains multiple normal-polarity subzones, of
which two (WT1r.4n, WT1r.7n) are documented by multiple
paleomagnetic samples and are considered coeval with MT1n and
MT2n of Hounslow and Muttoni (2010) with global correlation
potential (Fig. 2).

Published online: December 9, 2019
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Figure 1 — Paleogeographic context and location of Wantou section. A, B, Early-Middle Triassic paleogeography map of Yangtze Block (A) and
Nanpanjiang Basin (B) (modified from Lehrmann et al. (2015), indicating previous studies (red stars) across the EMTB, including Wantou. C,
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enlarged portion of map (E) of Fengshan Country to Jinya town and Wantou section. F, Locations relative to the Nanning province capital and

Hechi city. (Base maps modified from https://map.baidu.com)

The late Spathian positive carbon isotope shift followed by
an early Anisian plateau has been documented at Losar, North
India (Galfetti et al., 2007), Desli Caira, Romania (Gradinaru
et al., 2007), Guandao, South China (Lehrmann et al., 2015)
and at Wantou (Ovtcharova et al., 2015; and this study). The
beginning of the 6"°C_, plateau is near the base of polarity zone
WT2n (= chron MT3n of Hounslow and Muttoni, 2010) (Fig.
2) and slightly above the FO of Ch. timorensis s.str. at Guandao,
Wantou and Degli Caria.

The combination of potential global isochronous markers
includes magnetic polarity chrons, conodont occurrences (the
FO of Ch. timorensis s.str., the preferred potential proxy in this
study for the Anisian GSSP level, is at about 20% up within the
reversed-polarity subchron MT1r between the brief MT1n and
MT2n), typical ammonoid occurrences (the FO of Ch. timorensis
s.str. level is 1.3 m above the last occurrence of Neopopanoceras
haugi), carbon isotopes (the FO of Ch. timorensis s.str. level is 0.74
m below the peak of a significant positive excursion) (Fig. 2), and
an age model from the combination of U-Pb dates with regional
cyclostratigraphy (the FO of Ch. timorensis s.str. is projected to
be at approximately 246.7 Ma).

This combination implies that the Wantou outcrops of

Guangxi, South China, have great potential as the GSSP reference
section for the Farly-Middle Triassic boundary and can enable
precise global correlation into different facies.

A formal GSSP proposal is being prepared by this group in
coordination with the other teams that have studied this section,
and a potential Anisian working-group field meeting is being
planned for May-June of 2020 in association with a Geobiology
Congress in Wuhan, China.
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Figure 2 — Integrated stratigraphy of the Wantou section with magnetic polarity zones (this study; black is normal polarity, white is reversed), U-Pb
dates from zircons (Ovtcharova et al., 2015), ammonoid zones (Galfetti et al., 2008), conodont ranges and datums (Ovtcharova et al., 2015; Yan
etal., 2015), 3'°C__, curve (Ovtcharova et al., 2015; Sun et al., 2012, and this study), and 6'°0 and interpreted sea-surface temperatures from
conodont apatite (Sun et al., 2012). Beds of volcanic ash in the lithology column have their names in red. Positive shiftin 8'°C__ is highlighted by
blue, and the plateau is marked by orange. Conodont abbreviations: FO-T. h = first occurrence (FO) of Tr. homeri; FO-G. ¢ = First occurrence of
Gl. carinata; FO-C. t = First occurrence of Ch. timorensis sensu stricto; FO-G. t = First occurrence of GI. tethydis; FO-M. a = First occurrence of
M. alexander, Ch. = Chiosella, Tr. = Triassospathodus, Nv. = Novispathodus, Gl. = Gladigondolella, M. = Magnigondolella, Sp. = Spathicuspus.
The photo of conodont Ch. timorensis. s.str. is from Yan et al. (2015).
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