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INTRODUCTION

Environmental perturbations, extinctions and radiations 
occurred in the Carnian, ca. 237–227 Ma (Simms & Ruffell, 
1989; Dal Corso et al., 2020). The interval of major climate 
change and biological turnovers is named the Carnian Pluvial 
Episode (CPE)—but also other names have been used in the 
literature, e.g., Reingraben Turnover or Event, Carnian crisis, 
Carnian Humid Event, Mid-Carnian Event, and Carnian Wet 
Intermezzo (Schlager & Schöllnberger, 1974; Simms & Ruffell, 
1989; Hornung & Brandner, 2005; Hornung et al., 2007a,b; 
Kozur & Bachmann, 2010; Ogg, 2015; Ruffell et al., 2016; Sun et 
al., 2016; Dal Corso et al., 2018a, 2020)—and occurred between 
ca. 234 and 232 Ma (Figure 1). The CPE was first defined as an 
episode of more humid (pluvial) conditions within the generally 
arid climate of the Late Triassic, coeval with extinctions among 

marine and terrestrial animals (Simms & Ruffell, 1989). The 
original hypothesis of a widespread CPE made by Simms and 
Ruffell initially nearly fell into obscurity (Simms & Ruffell, 2018), 
but evidence of a Carnian global perturbation of the climate has 
steadily grown since then.

A major step-forward in the definition and understanding of 
the CPE has been through stable C-isotope (d13C) stratigraphy. 
The d13C signature of marine carbonates, and marine and 
terrestrial organic matter from different Carnian successions 
around the world show clear and consistent shifts. Multiple 
sharp negative C-isotope excursions (NCIEs), starting across the 
Julian 1–Julian 2 boundary (i.e., boundary between the Thetyan 
Trachyceras aonoides–Austrotrachyceras austriacum ammonoid 
Zones) of the early Carnian and terminating at the base of the 
Tuvalian 2 (Tropites subbullatus Zone) of the late Carnian, are 
found in the sedimentary record (Figure 1; Dal Corso et al., 
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2012, 2015, 2018b, 2020; Mueller et al., 2016b, 2016a; Sun 
et al., 2016, 2019; Miller et al., 2017; Baranyi et al., 2019; Shi 
et al., 2019; Fu et al., 2020; Jin et al., 2020, 2022, 2023; Lu et 
al., 2021; Tomimatsu et al., 2021; Lestari et al., 2024; Rahman 
et al., 2024; Zhang et al., 2024). 4 NCIEs are recorded during 
the CPE interval in most of sections with good age control and 
correlatability (e.g., Sun et al., 2016; Dal Corso et al., 2018b). 
In some records a (smaller) 5th NCIE has been suggested, and 
further late Tuvalian NCIEs are recorded, needing confirmation 
and better age (Baranyi et al., 2019; Hounslow et al., 2022; 
Hounslow and Gallois, 2023; Zhang et al., 2024). The magnitude 
of the negative d13C shifts varies between NCIEs and localities, 
but it is in general >2‰ (Figure 1). The global occurrence of 
synchronous NCIEs, and the fact that they are recorded in 
different archives (carbonates and organic matter) and geological 
settings (marine and terrestrial), indicate discrete substantial 
injections of 13C-depleted carbon into the reservoirs of the 
exogenic C-cycle (Dal Corso et al., 2012, 2022). The discovery 
of the Carnian NCIEs has allowed a better understanding of the 
nature of the CPE, but also provided a chemostratigraphic tool to 
identify its boundaries and correlate sections. Previous definitions 
of the CPE interval were based mainly on sedimentological and 
palynological changes that were, by their own nature, strongly 
influenced by local environmental and depositional conditions.

The NCIEs occurred in a relatively long interval of up to 
2.5 Myr (likely 1.2–1.6 Myr according to recent stratigraphies; 
Miller et al., 2017; Bernardi et al., 2018; Hounslow and Gallois, 
2023; Dal Corso et al., 2024; Zhang et al., 2024). Each NCIE 
seems linked to discrete environmental changes as evidenced 
by, for example, distinct siliciclastic inputs in marine basins, 
marine extinctions, pulses of higher nutrient fluxes to lacustrine 
environments and multiple shifts in sporomorphs assemblages 
from xerophytic to hygrophytic (Roghi et al., 2010; Dal Corso 
et al., 2018b, 2020; Baranyi et al., 2019; Lu et al., 2021).

A number of increasingly higher resolution studies indicate 
that the vision of the CPE as a single “pluvial” episode is incorrect. 
Here, I argue that current knowledge requires a necessary change 
in perspective on the CPE: as a time interval punctuated by 
discrete events that could have had different unrelated triggers, 
and which each could had different effects on the environments 
and biota. Indeed, each discrete event within the CPE is 
comparable, in duration and genesis, to other major C-isotope 
perturbations of the Phanerozoic.

MULTIPLE C-CYCLE PERTURBATIONS 
DURING THE CARNIAN

The NCIEs of the CPE indicate injections of isotopically 
light carbon into the reservoirs of the exogenic carbon cycle, but 
pinpointing the source of the 13C-depleted carbon is difficult. Age 
overlap between the CPE and the emplacement of Wrangellia 
large igneous province (Furin et al., 2006), an oceanic plateau 
that erupted at equatorial latitudes in the Panthalassa (Lassiter 
et al., 1995; Greene et al., 2010; Tomimatsu et al., 2021), points 
to a volcanic source of CO2 (Dal Corso et al., 2012, 2020; Lu 
et al., 2021; Mazaheri-Johari et al., 2021; Jin et al., 2023). The 

C-isotope signature of Wrangellia’s CO2 is unknown, but mantle 
carbon appears to be on average more 13C-enriched than the 
depleted source that it is required to generate the NCIEs. The 
minimum likely volume of basalt erupted by Wrangellia (Lassiter 
et al., 1995) would have degassed about 5000 Gt C (Dal Corso 
et al., 2012). Considering such an amount of volcanic CO2 
(split into four pulses of 1250 GtC each on the assumption of 
4 discrete NCIEs) with d13C set at -5‰, box modelling can 
reproduce 4 NCIEs, but with magnitudes of ≤1‰ (Dal Corso et 
al., 2022), so smaller than those actually recorded (>2‰; Figure 
1). Mass balance calculations indicate that C emissions of about 
3500–17500 Gt C would be needed to produce CPE’s negative 
C-isotope shifts, depending on the C-isotope signature of the 
source (Miller et al., 2017).

Positive feedback with destabilization of ocean floor methane 
hydrates and consequent release of extremely 13C-depleted carbon 
(Dickens et al., 1995) cannot be excluded for the CPE (Dal Corso 
et al., 2012), but it is also difficult to prove as the process does 
not leave an independent signature in the sedimentary record. 
Current understanding of Wrangellia emplacement (Greene et 
al., 2010) does not suggest significant production of thermogenic 
CO2 from the interaction of the rising magma and surrounding 
sediments, as observed for other LIPs, e.g., Siberian Traps (e.g., 
Burgess et al., 2017; Svensen et al., 2018) and Central Atlantic 
Magmatic Province (e.g., Davies et al., 2017; Heimdal et al., 
2020).

In marine sedimentary successions that are well-constrained 
with ammonoid and conodont biostratigraphy, the first NCIE of 
the CPE is found across the Julian 1–2 boundary (i.e., boundary 
between the Trachyceras aonoides and Austrotrachyceras austriacum 
ammonoid Zones), the second NCIE within the Julian 2 (i.e., 
Austrotrachyceras austriacum ammonoid Zone), the third NCIE 
across the Julian 2–Tuvalian 1 boundary (i.e., boundary between 
the Austrotrachyceras austriacum and Tropites dilleri ammonoid 
Zones) and the fourth NCIE at the base of the Tuvalian 2 (i.e., 
Tropites subbullatus ammonoid Zone; Figure 1). In the GTS2020, 
Geologic Time Scale (Ogg et al., 2020), the estimated lengths 
of the Carnian biochronozones are: Julian 1 = 2.8 Myr, Julian 
2 = 0.6 Myr, Tuvalian 1 = 0.8 Myr. Magnetostratigraphic study 
of successions in the Germanic Basin gives a longer duration for 
the Tuvalian 1 of 1.9 Myr (Zhang et al., 2020). Other integrated 
stratigraphy (Bernardi et al., 2018) gives durations of 3 Myr for 
the Julian 1, 0.9 Myr for the Julian 2, and 1 Myr for the Tuvalian 
1. These three proposed timescales show a relatively long Julian 
2 – Tuvalian 1 (i.e. CPE) interval of 1.4–2.5 Myr (see also 
discussion in Dal Corso et al., 2024). New magnetostratigraphic 
analysis from the Dolomites allowed updating the Geomagnetic 
Polarity Timescale, giving a new age for the Ladinian–Carnian 
boundary of ca. 236.5 Ma (Maron et al., 2024), thus shortening 
by ca. 0.5 Myr the above-mentioned previous estimates for the 
duration of the Julian 1.

Cyclostratigraphy from a terrestrial succession in England 
(UK) gives durations of about 0.4 Myr for both the Julian 2 
and the Tuvalian 1 (Miller et al., 2017), with a total duration of 
the CPE of about 1.1 Myr. Additionally, this cyclostratigraphy 
shows that each NCIE recorded in this section (a total of 4) had 
durations of 41–130 Kyr (Miller et al., 2017). These estimates are 
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Figure 1– A) Carnian timescale—substages and Tethyan ammonoid Zones after the Geologic Time Scale 2020 (Ogg et al., 2020)—age of the 
Carnian Pluvial Episode (CPE), reference C-isotope curve across the CPE from the Western Tethys showing the negative C-isotope excursions 
(NCIE 1–4) that mark the interval (Dal Corso et al., 2018b), and maximum age span of Wrangellia LIP (Greene et al., 2010; Dal Corso et al., 
2020). Note that recently updated Geomagnetic Polarity Timescale estimates the age of the Ladinian–Carnian boundary at ca. 236.5 Ma (Maron 
et al., 2024). T. = Tuvalian. B) NCIEs and LIP volcanism during the Pliensbachian – Toarcian of the Jurassic (Kemp et al., 2024b). 
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shorter than those obtained by cyclostratigraphy in the Carnian 
marine succession of the Tibetan Plateau, with durations for each 
CIEs of 87–318 Kyr, and a total duration of the CPE of ca. 1.2 
Myr (Zhang et al., 2024).

Each NCIE was separated by relatively long intervals of rather 
stable d13C of ca. 100–800 Kyrs (Figure 1; Miller et al., 2017; 
Bernardi et al., 2018; Dal Corso et al., 2024; Zhang et al., 2024). 
The CPE is therefore a long interval punctuated by relatively 
short NCIEs (Figure 1).

COMPARISON WITH OTHER EVENTS

Miller et al. (2017) first pointed out that the inferred duration 
of each NCIE of the CPE is similar to the duration of NCIEs 
that mark major ancient hyperthermals, such as the Palaeocene–
Eocene Thermal Maximum (PETM, ca. 200 kyr; e.g., Li et al., 
2022), the Toarcian oceanic anoxic event (T-OAE, or Jenkyns 
Event, 288±119 Kyr; e.g., Kemp et al., 2024b), the end-Triassic 
mass extinction (ETME, ca. 20–100 Kyr; Ruhl et al., 2010; Yager 
et al., 2017) and the Permian–Triassic boundary mass extinction 
(PETM, ca. 80 Kyr; Burgess et al., 2014). Moreover, some of these 
prominent Phanerozoic NCIEs occurred close in time to other 
NCIEs, and these temporally close NCIEs produced distinct 

environmental-biological changes and are often considered 
genetically different. 

I here provide an example (Figure 1). The duration of the 
CIE that marks the T-OAE—an event that had many similarities 
with the CPE (e.g., comparable extinction rates among 
marine ecosystems and similar vegetation responses, enhanced 
hydrological cycling, and both linked to the emplacement of LIPs; 
see, e.g., Dal Corso et al., 2020; Baranyi et al., 2024; Kemp et 
al., 2024a)—was 288±119 Kyr (Figure 1; Kemp et al., 2024b). 
Notably, the T-OAE CIE post-dated by ca. 200–250 Kyr an 
earlier CIE that occurred across the Pliensbachian–Toarcian 
(Pl–T) boundary, and which had a duration <200 Kyr (Martinez 
et al., 2017; Al-Suwaidi et al., 2022; Kemp et al., 2024b). The 
Pl–T and T-OAE CIEs were coeval with two LIPs, the Karoo 
and Ferrar, respectively (Kemp et al., 2024b). 

The rates at which 13C-depleted CO2 was emitted into the 
exogenic reservoirs of the C-cycle during different Phanerozoic 
NCIEs may have differed considerably, as can be inferred from 
first principles given the widely differing NCIE magnitudes at 
different events. Considering only the NCIE-1 event of the CPE 
(Figure 1), with a duration of the negative d13C shift of 20.5–43.4 
Kyr and estimated release of CO2 of about 1250–17000 Gt C (see 
discussion above), the 13C-depletd CO2 would have been injected 
into the atmosphere–ocean system at a rate of about 0.06–0.8 Gt 

Figure 2 – Different Carnian subdivisions at substage level. A) Subdivision with ammonoid Zones after Gallet et al. (1994; see also, e.g., Hornung 
& Brandner, 2005), with Julian 1–2 and Tuvalian 1–3, and Daxatina canadensis as the first ammonoid subzone of the Trachyceras aonoides Zone 
(sensu Mietto et al., 2012), including the original substage subdivision of Mojsisivics et al. (1895) with the Cordevolian (e.g., Hornung et al., 2007b). 
B) Subdivision shown in the Geologic Timescale (GTS) 2020 (Ogg et al., 2020). C) Proposed subdivision into “Lower”, “Middle”, and “Upper” 
Carnian substages. T. = Tuvalian. Magnetostratigraphy is from Zhang et al. (2015, 2020). Age of the negative C-isotope excursions (NCIEs) as in 
Figure 1. EMCE = Early–Middle Carnian Event, MCE = Middle Carnian Event, MLCE = Middle–Late Carnian Event, LCE = Late Carnian Event.
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C/year (shorter scenario) to 0.02–0.4 Gt C/year (longer scenario). 
These rates of C emission are comparable to those estimated for 
the C-cycle perturbations at the T-OAE (0.04–0.27 Gt C/year 
on average; ca. 6000–40000 Gt C over 150–200 Kyr) and the 
ETME (0.08–0.65 Gt C/year on average; ca. 2000–14000 Gt 
C over 10–110 Kyr; Hu et al., 2024).

Such CO2 emissions into the Carnian atmosphere could 
increase global mean surface temperature by up to 5 ºC during 
each NCIE, as indicated by box modelling (Dal Corso et al., 
2022). Temperature records for the CPE are based on d18O of 
conodont apatite and are of low resolution, but they do show at 
least two distinct warming events of 4 ºC and 7 ºC (Hornung et 
al., 2007a; Sun et al., 2016). Higher resolution reconstructions 
of palaeotemperatures are needed. Similarly, higher-resolution 
studies across each NCIE are required to better understand 
the specific environmental and biological responses to the CO2 
emissions. Distinct humid pulses, for example, are observed in 
coincidence with each NCIE in the Western Tethys (Roghi et al., 
2010; Dal Corso et al., 2018b), but the patterns of the climate 
change and consequent biological turnovers are only coarsely 
defined (Dal Corso et al., 2020). Marine animals seem to have 
experienced a first crisis during NCIE-1, but a more severe 
turnover at the Julian–Tuvalian boundary, in correspondence to 
NCIE-3, i.e. ca. 0.8 Myr after the onset of the CPE (Figure 1; 
Rigo et al., 2007, 2018; Balini et al., 2010; Jenks et al., 2015; 
Chen et al., 2016; Sun et al., 2016; Dal Corso et al., 2020; Tóth 
et al., 2024). A crisis in marine carbonate producers is recorded at 
NCIE-1, recovering within the CPE around NCIE-3 (Dal Corso 
et al., 2015; Gattolin et al., 2015; Jin et al., 2022).

CPE’s d13C negative shifts were separated by ca. 100–800 Kyrs, 
including positive d13C rebounds and following stable intervals 
(Miller et al., 2017; Dal Corso et al., 2024; Zhang et al., 2024; 
Figure 1). The time that passed between the successive emissions 
of CO2 into the Carnian atmosphere could have been sufficient 
for environments and biota to recover, at least partially, from 
the stress caused by global warming. For example, highly diverse 
and complex marine ecosystems were already established ca. 1 
Myr after the PTME (Dai et al., 2023). Biotic recovery after the 
ETME could have taken 0.22–0.7 Myr (Atkinson and Wignall, 
2019). An ecosystem with high productivity thrived in the 
Chicxulub crater 30 Kyr after the asteroid impact (ca. 66 Ma), 
i.e. after the Cretaceous–Palaeogene mass extinction (Lowery et 
al., 2018). It has been hypothesized that the extinctions during 
the CPE could have paved the way for the radiation of groups of 
animals and plants that today form modern-type ecosystems (Dal 
Corso et al., 2020), hence understanding the mechanisms and 
patterns of the Carnian diversification is of primary importance.

CARNIAN EVENTS AND STRATIGRAPHIC 
FRAMEWORK

Given the durations of the CIEs and inter-CIEs intervals and 
comparison with other similar Phanerozoic events, the C-cycle 
perturbations that mark the CPE must be considered as separate 
events to more accurately reconstruct and better understand 
the mechanisms of Carnian environmental and biological 

changes, and properly compare these Carnian events to others 
of the Phanerozoic. This new approach would highly benefit 
from a more refined and formal chronostratigraphy. Given the 
large amount of data that has been collected in the last years, 
considering the CPE as a single phenomenon obfuscates the 
true nature of the Carnian events and does not match evidence 
archived in geological records for distinct successive geochemical, 
sedimentological and biological changes. Ruffell and colleagues 
had already pointed out that the NCIE marking the onset of the 
CPE “best approximates an ‘event’ as in event stratigraphy, as 
opposed to the bulk of the Carnian, which we term the Carnian 
Humid Episode”, concluding that “the two must no longer be 
confused in the literature” (Ruffell et al., 2016). At the time of 
the review by Ruffell et al. (2016) the presence of a further 3 
NCIEs during the CPE was unknown (Sun et al., 2016; Miller 
et al., 2017; Dal Corso et al., 2018), and their suggestion was 
only partially followed in later literature. 

Lucas and Hounslow proposed a profound change of the 
Late Triassic chronostratigraphy, including up-ranking the 
Carnian Stage and its substages (Lucas, 2013; Hounslow 
and Lucas, 2023). Among the many considerations, their 
rationale states that the revision “would greatly assist more 
precise chronostratigraphic correlation connected with events 
associated with the CPE, events which are known to cross the 
Julian-Tuvalian boundary” (Hounslow and Lucas, 2023). I share 
this view. Their suggestion clearly shows the need to revise the 
Upper Triassic chronostratigraphy to simplify correlations and 
age determinations (Hounslow and Lucas, 2023)—the Carnian 
is one of the longest stages of the Phanerozoic, and the Norian is 
by far the longest—but formal definition of Stages is done by the 
Subcommission on Triassic Stratigraphy (https://stratigraphy.org/
statutes). In lights of the proposal of Hounslow and Lucas, and 
of possible future formal outcomes on the topic, I here suggest 
to revise firstly the substages of the Carnian.

Subdivision of the Carnian into substages was originally made 
by Mojsisovics and colleagues according to their ammonoid 
zones, i.e. Trachyceras aon (Cordevolian), Trachyceras aonoides 
(Julian) and Tropites subbullatus (Tuvalian) (Mojsisovics et al., 
1895; Ogg et al., 2020). The use of Cordevolian has gradually 
almost disappeared from the literature since the 1970s (e.g., 
Krystyn, 1978; Gallet et al., 1994; Hornung & Brandner, 2005; 
Lukeneder & Lukeneder, 2015; Dal Corso et al., 2018), although 
arguments against its disappearance remained and reconsideration 
has been urged (Kozur, 2003; Bachmann & Kozur, 2004; Kozur 
& Bachmann, 2010; Lucas, 2013; Zhang et al., 2020). Currently, 
the most widely used Carnian Stage subdivision scheme includes 
the Julian (lower Carnian) and the Tuvalian (upper Carnian) 
substages, which are further divided into the ammonoid 
biochronozones Julian 1 (Trachyceras aonoides Zone) and Julian 
2 (Austrotrachyceras austriacum Zone), and Tuvalian 1 (Tropites 
dilleri Zone), Tuvalian 2 (Tropites subbulatus Zone) and Tuvalian 
3 (Anatropites spinosus Zone) sensu Gallet et al. (1994). Notably, 
the Global Stratotype Section and Point (GSSP) for the base 
of the Carnian is placed at the base of the Daxatina canadensis 
subzone of the Trachyceraas aonoides Zone, with the FAD of the 
cosmopolitan ammonoid Daxatina canadensis (Broglio Loriga 
et al., 1999; Mietto et al., 2012). Daxatina canadensis is the first 
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ammonoid Zone of the Carnian in the Geologic Time Scale 
(GTS) 2020 (Ogg et al., 2020), following the zonation of Jenks 
et al. (2015; Figure 2).

Kozur & Bachmann argued against the abandonment of the 
Cordevolian as the first substage of the Carnian, and advised 
a return to the original subdivision of Mojsisovics because 
Cordevolian (Daxatina canadensis–Trachyceras aon) and Julian 
(Trachyceras aonoides–Austrotrachyceras austriacum) ammonoid 
faunas are distinct, with the Cordevolian still containing Ladinian 
elements (e.g., Kozur, 2003; Bachmann & Kozur, 2004). Urlichs 
(1994) proposed “to abandon the Julian… and to maintain the 
Cordevolian consisting of the Aon and the Aonoides Zones” 
(n.b., Trachyceras aon and Trachyceras aonoides are subzones of the 
Trachyceras aonoides Zone in other biostratigraphies; see Figure 
2). This conclusion came from revision of Trachyceras ammonoids 
found in the San Cassiano Formation in the type localities of the 
Cordevolian and the Julian in the Dolomites, Italy (Urlichs, 1994; 
but see also Di Bari & Baracca, 1998). Notably, in the Dolomites 
NCIE-1 of the CPE is recorded at the transition from the San 
Cassiano Formation and the overlying Heiligkreuz Formation, 
i.e., transition from Trachyceras aonoides to Austrotrachyceras 
austriacum Zones (e.g., Dal Corso et al., 2012; Pecorari et al., 
2023). Also, the term “Cordevolian–Julian boundary (sensu 
Urlichs, 1974) extinction” is used in the literature of the 1980s, 
and constituted one of the pillars on which the theory of a global 
CPE was developed by Simms and Ruffell (Benton, 1986; Simms 
& Ruffell, 1989; Janofske, 1992).

I here propose that a revised substage-level subdivision of 
the Carnian, with a “Lower Carnian” (Daxatina canadensis–
Trachyceras aonoides Zones; Julian 1), a “Middle Carnian” 
(Austrotrachyceras austriacum Zone; Julian 2), and an “Upper 
Carnian” (Tropites dilleri–Anatropites spinosus Zones, Tuvalian 
1–3; Figure 2), might be more appropriate: “Julian 1” and “Julian 
2” are de facto used in the recent literature as (informal) substages 
of the Carnian, simply because this significantly helps correlations 
and discussions on the previously discussed Carnian events. 
Moreover, a rise of ammonoid extinction rates is recorded from 
the Trachyceras aonoides Zone to the Austrotrachyceras austriacum 
Zone, and a major turnover with the rise of the Tropitidae occurs 
later, at the boundary between the Austrotrachyceras austriacum 
Zone and Tropites dilleri Zone (Figure 2; e.g., Simms & Ruffell, 
1989; Balini et al., 2010; Jenks et al., 2015; Dal Corso et al., 
2020). Magnetostratigraphy from South China and the Germanic 
Basin, which needs further confirmation, shows that at the onset 
of the CPE, i.e., across the boundary between Trachyceras aonoides 
and Austrotrachyceras austriacum ammonoid Zones, a transition 
from a ca. 1.3 Myr “long-reversed-polarity-dominated” interval 
to a “normal-polarity-dominated” interval is recorded (Zhang et 
al., 2015, 2020). Subdivision of the Carnian into “Early/Lower”, 
“Middle” and “Late/Upper” Carnian simplifies correlation of 
CPE events and is justified by the clear biotic changes.

Notably, the CPE has been called in the literature also “Middle 
Carnian Wet Intermezzo” and “mid-Carnian Event” (Kozur & 
Bachmann, 2010; Ogg 2015; Ogg et al., 2020): however, during 
a round table at a workshop on the CPE, no consensus could 
be reached on “mid-Carnian” because “the major concern being 
the use of “middle Carnian”. In the recent literature the Carnian 

stage is subdivided in two substages, Lower (or Julian) and Upper 
(or Tuvalian)…, hence, from a chronostratigraphic point of 
view “Mid-Carnian Episode (or Event)” would be misleading” 
(Dal Corso et al., 2018a). Informal “middle Carnian” appears 
extensively in the literature (e.g., Cousminer & Manspeizer, 
1976; Witte & Kent, 1989; Cornet & Olsen, 1990; Kozur & 
Mock, 1991; Kozur & Mostler, 1994; Simms & Ruffell, 1989; 
Noyan & Kozur, 2007; Tekin & Göncüoglu, 2007; Moix et al., 
2007; Pott et al., 2007; Kozur et al., 2009; Kozur & Bachmann, 
2010; Kolar-Jurkovšek & Jurkovšek, 2010; Lucas, 2010, 2020; 
Franz et al., 2014; Zhang et al., 2015; Ogg 2015; Miller et al., 
2017; Forel et al., 2017; Bernardi et al., 2018; Jin et al. 2023). 
However, in many cases, “middle Carnian” has been used as 
synonym of Julian as in the three-substage subdivision of the 
Carnian into Cordevolian, Julian and Tuvalian. Hence, the here 
proposed substages would partially alter the original subdivision 
of Mojsisivics and colleagues (1895; Figure 2), and could 
potentially generate some confusion, especially when referring to 
older literature. Moreover, my short discussion is focused only on 
Tethyan ammonoid zonation, and the impact (and correlation) of 
the revised substages on other biogeographical provinces has not 
been analyzed. Conodont and sporomorph biozonations, which 
are very important for correlation of Carnian successions, have 
also not been considered here. A larger and deeper discussion of 
Carnian stratigraphy is required to present a more formal proposal 
for a revision of the Carnian Stage, but this is beyond the scope of 
this paper, which primarily aims at showing the need to change 
perspective on the events that marked the Carnian, and how this 
could benefit from revision of Carnian substages. I here submit 
my suggestion to the stratigraphers of the Triassic with the aim 
of fostering further discussions.

Pending validation from the community, the Carnian events 
could be named, in stratigraphic order from older to youngest, 
Early–Middle Carnian Event (EMCE; NCIE-1), Middle Carnian 
Event (MCE; NCIE-2), Middle–Late Carnian Event (MLCE; 
NCIE-3) and Late Carnian Event (LCE; NCIE-4) (Figure 2). 
“Carnian Pluvial Episode” should be abandoned, but it remains 
relevant that these Carnian events occurred close in time—in 
a maximum timeframe of 2.5 Myr—as observed for similar 
successive events during other key intervals of the Mesozoic, 
e.g., in the end Permian – Early Triassic, Late Triassic, and Early 
Jurassic (Figure 1).

CONCLUSIONS

The large body of data that have been collected in the last 
decade show multiple global C-isotope excursions during the 
Carnian, early Late Triassic. Each C-cycle disruption, and inferred 
consequent climate change, appear to have had a relatively short 
duration of tens of thousands of years, which is comparable to 
the duration of the C-isotope excursions that are recorded in 
coincidence to major Phanerozoic events. However, the interval 
of the Carnian that encompassed all these discrete events, i.e., 
the entire so-called Carnian Pluvial Episode (CPE), lasted for 
up to 2.5 Myrs. Approaching the Carnian C-cycle perturbations 
as separate events, possibly linked to different triggers and with 
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different impacts on the environment and biota, is necessary to 
better understand the climatic evolution and extinctions/recovery 
patterns, and to allow proper comparisons with other Phanerozoic 
events. A re-evaluation of the substage-level subdivision of the 
Carnian Stage could help improving stratigraphic correlations 
of these events.
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